已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The application of machine learning algorithms in predicting the length of stay following femoral neck fracture

医学 逐步回归 算法 围手术期 机器学习 计算机科学 线性回归 外科 内科学
作者
Hao Zhong,Bingpu Wang,Dawei Wang,Zirui Liu,Cong Xing,Yu Wu,Qiang Gao,Shibo Zhu,Haodong Qu,Zeyu Jia,Zhigang Qu,Guangzhi Ning,Shiqing Feng
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:155: 104572-104572 被引量:22
标识
DOI:10.1016/j.ijmedinf.2021.104572
摘要

Femoral neck fracture is a frequent cause of hospitalization, and length of stay is an important marker of hospital cost and quality of care provided. As an extension of traditional statistical methods, machine learning provides the possibility of accurately predicting the length of hospital stay. The aim of this paper is to retrospectively identify predictive factors of the length of hospital stay (LOS) and predict the postoperative LOS by using machine learning algorithms. Based on the admission and perioperative data of the patients, linear regression was used to analyze the predictive factors of the LOS. Multiple machine learning models were developed, and the performance of different models was compared. Stepwise linear regression showed that preoperative calcium level (P = 0.017) and preoperative lymphocyte percentage (P = 0.007), in addition to intraoperative bleeding (p = 0.041), glucose and sodium chloride infusion after surgery (P = 0.019), Charlson Comorbidity Index (p = 0.007) and BMI (P = 0.031), were significant predictors of LOS. The best performing model was the principal component regression (PCR) with an optimal MAE (1.525) and a proportion of prediction error within 3 days of 90.91%. Excessive intravenous glucose and sodium chloride infusion after surgery, preoperative hypocalcemia, preoperative high percentages of lymphocytes, excessive intraoperative bleeding, lower BMI and higher CCI scores were related to prolonged LOS by using linear regression. Machine learning could accurately predict the postoperative LOS. This information allows hospital administrators to plan reasonable resource allocation to fulfill demand, leading to direct care quality improvement and more reasonable use of scarce resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助困困困死了采纳,获得10
1秒前
2秒前
笑笑应助LmaPN7采纳,获得30
4秒前
浅色西完成签到,获得积分10
5秒前
ivy发布了新的文献求助10
5秒前
6秒前
不安青牛应助标致断缘采纳,获得10
7秒前
8秒前
大胆小熊猫完成签到 ,获得积分10
10秒前
无聊的以云完成签到,获得积分10
11秒前
研友_Lw4Ngn发布了新的文献求助10
12秒前
秋北辰完成签到,获得积分20
13秒前
14秒前
忧心的毛巾完成签到,获得积分10
14秒前
15秒前
孙燕应助小孙使劲儿冲采纳,获得10
15秒前
赘婿应助一支布洛芬采纳,获得10
16秒前
zzz完成签到 ,获得积分10
17秒前
18秒前
19秒前
烟花应助jiangmax采纳,获得10
20秒前
三水木木发布了新的文献求助10
20秒前
zhaozhaozhao发布了新的文献求助10
21秒前
彭大发布了新的文献求助10
22秒前
24秒前
郑总完成签到 ,获得积分10
24秒前
13369932259发布了新的文献求助10
25秒前
26秒前
Jasper应助虞头星星采纳,获得10
28秒前
xy发布了新的文献求助30
29秒前
29秒前
31秒前
浮光关注了科研通微信公众号
31秒前
科研通AI2S应助啊咧采纳,获得10
32秒前
小马甲应助木棉采纳,获得10
32秒前
33秒前
John完成签到 ,获得积分10
33秒前
33秒前
zhaozhaozhao完成签到,获得积分10
34秒前
Alex应助秋北辰采纳,获得10
34秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4111078
求助须知:如何正确求助?哪些是违规求助? 3649403
关于积分的说明 11558863
捐赠科研通 3354586
什么是DOI,文献DOI怎么找? 1842992
邀请新用户注册赠送积分活动 909153
科研通“疑难数据库(出版商)”最低求助积分说明 825950