Deep neural network battery life and voltage prediction by using data of one cycle only

电池(电) 残余物 人工神经网络 重新使用 自行车 电压 充电周期 工作(物理) 计算机科学 功率(物理) 可靠性工程 人工智能 模拟 工程类 算法 电气工程 机械工程 考古 历史 废物管理 物理 量子力学 涓流充电
作者
Chia-Wei Hsu,Rui Xiong,Nan-Yow Chen,Ju Li,Nien‐Ti Tsou
出处
期刊:Applied Energy [Elsevier BV]
卷期号:306: 118134-118134 被引量:102
标识
DOI:10.1016/j.apenergy.2021.118134
摘要

Rechargeable batteries, such as LiFePO4/graphite cells, age differently by variability in manufacturing, charging (energy inflow) policy, temperature, discharging conditions, etc. Great economic and environmental value can be extracted if we can predict how a battery ages and ascertain its current state of health and residual useful life, based on just a few cycles of testing. Here, by developing novel-architecture deep neural networks with a special convolutional training strategy and taking advantage of recently published battery cycling data, we show that one can predict the residual life of a battery to a mean absolute percentage error of 6.46%, using only one cycle of testing. The cycle-by-cycle profiles, such as discharge voltage, capacity, and power curves of any given cycle, of used batteries with unknown age can also be accurately predicted for the first time. Moreover, our models can extract data-driven features from the data which were much more influential on the predicted properties than human-picked features. This work has shown that single cycle data contains a sufficient amount of information to predict essential battery properties with high accuracy. It is expected to provide tremendous economic and environmental benefits since reuse and recycling of batteries can be better planned and less lithium-ion batteries end up in landfills.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
6秒前
晚晚完成签到 ,获得积分10
9秒前
在水一方应助KennyS采纳,获得10
11秒前
小犁牛完成签到 ,获得积分10
13秒前
15秒前
上官若男应助LANER采纳,获得10
18秒前
19秒前
dennisysz发布了新的文献求助10
20秒前
20秒前
24秒前
KennyS发布了新的文献求助10
24秒前
科研通AI5应助早晚采纳,获得10
26秒前
研友_nqv5WZ发布了新的文献求助10
27秒前
今后应助科研通管家采纳,获得10
29秒前
852应助科研通管家采纳,获得30
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
Ankher应助科研通管家采纳,获得10
29秒前
JamesPei应助科研通管家采纳,获得10
29秒前
小马甲应助科研通管家采纳,获得10
29秒前
斯文败类应助科研通管家采纳,获得10
29秒前
iNk应助科研通管家采纳,获得20
30秒前
jianglili应助科研通管家采纳,获得10
30秒前
乐乐应助科研通管家采纳,获得10
30秒前
小蘑菇应助科研通管家采纳,获得30
30秒前
CodeCraft应助科研通管家采纳,获得10
30秒前
大个应助科研通管家采纳,获得10
30秒前
30秒前
ding应助科研通管家采纳,获得10
30秒前
Ava应助dennisysz采纳,获得10
31秒前
小鱼医生完成签到 ,获得积分10
31秒前
今后应助科研通管家采纳,获得10
31秒前
31秒前
充电宝应助科研通管家采纳,获得10
31秒前
Owen应助科研通管家采纳,获得10
31秒前
深情安青应助科研通管家采纳,获得10
31秒前
Lucas应助科研通管家采纳,获得10
31秒前
土豪的冷雁完成签到,获得积分10
33秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777367
求助须知:如何正确求助?哪些是违规求助? 3322743
关于积分的说明 10211437
捐赠科研通 3038087
什么是DOI,文献DOI怎么找? 1667060
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758103