Deep neural network battery life and voltage prediction by using data of one cycle only

电池(电) 残余物 人工神经网络 重新使用 自行车 电压 充电周期 工作(物理) 计算机科学 功率(物理) 可靠性工程 人工智能 模拟 工程类 算法 电气工程 机械工程 考古 历史 废物管理 物理 量子力学 涓流充电
作者
Chia-Wei Hsu,Rui Xiong,Nan-Yow Chen,Ju Li,Nien‐Ti Tsou
出处
期刊:Applied Energy [Elsevier BV]
卷期号:306: 118134-118134 被引量:102
标识
DOI:10.1016/j.apenergy.2021.118134
摘要

Rechargeable batteries, such as LiFePO4/graphite cells, age differently by variability in manufacturing, charging (energy inflow) policy, temperature, discharging conditions, etc. Great economic and environmental value can be extracted if we can predict how a battery ages and ascertain its current state of health and residual useful life, based on just a few cycles of testing. Here, by developing novel-architecture deep neural networks with a special convolutional training strategy and taking advantage of recently published battery cycling data, we show that one can predict the residual life of a battery to a mean absolute percentage error of 6.46%, using only one cycle of testing. The cycle-by-cycle profiles, such as discharge voltage, capacity, and power curves of any given cycle, of used batteries with unknown age can also be accurately predicted for the first time. Moreover, our models can extract data-driven features from the data which were much more influential on the predicted properties than human-picked features. This work has shown that single cycle data contains a sufficient amount of information to predict essential battery properties with high accuracy. It is expected to provide tremendous economic and environmental benefits since reuse and recycling of batteries can be better planned and less lithium-ion batteries end up in landfills.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洁净之柔完成签到,获得积分10
1秒前
1秒前
Nothing发布了新的文献求助10
1秒前
1秒前
张龙雨完成签到 ,获得积分10
2秒前
2秒前
科研通AI2S应助ShengzhangLiu采纳,获得10
7秒前
Xiaojiu发布了新的文献求助10
8秒前
8秒前
9秒前
13秒前
清心百合发布了新的文献求助10
14秒前
15秒前
kkkkkoi发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
21秒前
22秒前
Peggy发布了新的文献求助10
22秒前
小怪完成签到,获得积分20
23秒前
24秒前
26秒前
26秒前
Akim应助nmamtf采纳,获得10
26秒前
Albert发布了新的文献求助10
27秒前
积极从蕾应助ShengzhangLiu采纳,获得10
28秒前
封迎松完成签到 ,获得积分10
29秒前
29秒前
小C同学发布了新的文献求助10
30秒前
30秒前
tender完成签到,获得积分10
31秒前
核桃应助chen采纳,获得20
33秒前
白云垛发布了新的文献求助10
34秒前
35秒前
36秒前
Chengcheng完成签到,获得积分10
38秒前
Berrymeng发布了新的文献求助10
39秒前
小蘑菇应助小C同学采纳,获得10
40秒前
喜悦莛完成签到 ,获得积分10
41秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Ene—X Compounds (X = S, Se, Te, N, P) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4128006
求助须知:如何正确求助?哪些是违规求助? 3665308
关于积分的说明 11597464
捐赠科研通 3364449
什么是DOI,文献DOI怎么找? 1848716
邀请新用户注册赠送积分活动 912555
科研通“疑难数据库(出版商)”最低求助积分说明 828134