亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Extraction of Sunflower Lodging Information Based on UAV Multi-Spectral Remote Sensing and Deep Learning

RGB颜色模型 向日葵 人工智能 GSM演进的增强数据速率 计算机科学 遥感 萃取(化学) 随机森林 信息抽取 模式识别(心理学) 计算机视觉 环境科学 数学 地理 化学 色谱法 组合数学
作者
Guang Li,Wenting Han,Shenjin Huang,Weitong Ma,Qian Ma,Xin Cui
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (14): 2721-2721 被引量:32
标识
DOI:10.3390/rs13142721
摘要

The rapid and accurate identification of sunflower lodging is important for the assessment of damage to sunflower crops. To develop a fast and accurate method of extraction of information on sunflower lodging, this study improves the inputs to SegNet and U-Net to render them suitable for multi-band image processing. Random forest and two improved deep learning methods are combined with RGB, RGB + NIR, RGB + red-edge, and RGB + NIR + red-edge bands of multi-spectral images captured by a UAV (unmanned aerial vehicle) to construct 12 models to extract information on sunflower lodging. These models are then combined with the method used to ignore edge-related information to predict sunflower lodging. The results of experiments show that the deep learning methods were superior to the random forest method in terms of the obtained lodging information and accuracy. The predictive accuracy of the model constructed by using a combination of SegNet and RGB + NIR had the highest overall accuracy of 88.23%. Adding NIR to RGB improved the accuracy of extraction of the lodging information whereas adding red-edge reduced it. An overlay analysis of the results for the lodging area shows that the extraction error was mainly caused by the failure of the model to recognize lodging in mixed areas and low-coverage areas. The predictive accuracy of information on sunflower lodging when edge-related information was ignored was about 2% higher than that obtained by using the direct splicing method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助woleaisa采纳,获得20
1秒前
余可馨发布了新的文献求助10
1秒前
eo完成签到,获得积分10
7秒前
Ava应助woleaisa采纳,获得30
8秒前
11秒前
12秒前
慕青应助woleaisa采纳,获得30
13秒前
rengar完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
20秒前
wanci应助woleaisa采纳,获得10
22秒前
24秒前
田様应助woleaisa采纳,获得10
29秒前
加壹发布了新的文献求助10
31秒前
34秒前
Lucas应助woleaisa采纳,获得10
40秒前
广州小肥羊完成签到 ,获得积分10
42秒前
56秒前
56秒前
histamin完成签到,获得积分10
57秒前
加壹关注了科研通微信公众号
1分钟前
布谷发布了新的文献求助10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Chris完成签到 ,获得积分0
1分钟前
1分钟前
eo发布了新的文献求助10
1分钟前
靓丽的善斓完成签到,获得积分10
1分钟前
1分钟前
1分钟前
lmm完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482254
求助须知:如何正确求助?哪些是违规求助? 4583174
关于积分的说明 14388761
捐赠科研通 4512190
什么是DOI,文献DOI怎么找? 2472717
邀请新用户注册赠送积分活动 1458988
关于科研通互助平台的介绍 1432363