Improvement in the Prediction of Coronary Heart Disease Risk by Using Artificial Neural Networks

接收机工作特性 人工神经网络 医学 Lift(数据挖掘) 百分位 弗雷明翰心脏研究 弗雷明翰风险评分 多层感知器 人工智能 风险模型 内科学 计算机科学 机器学习 风险评估 疾病 冠心病 统计 风险分析(工程) 数学 计算机安全
作者
Orit Goldman,Orit Raphaeli,Eran Goldman,Moshe Leshno
出处
期刊:Quality management in health care [Ovid Technologies (Wolters Kluwer)]
卷期号:30 (4): 244-250 被引量:9
标识
DOI:10.1097/qmh.0000000000000309
摘要

Background and Objectives: Cardiovascular diseases, such as coronary heart disease (CHD), are the main cause of mortality and morbidity worldwide. Although CHD cannot be entirely predicted by classic risk factors, it is preventable. Therefore, predicting CHD risk is crucial to clinical cardiology research, and the development of innovative methods for predicting CHD risk is of great practical interest. The Framingham risk score (FRS) is one of the most frequently implemented risk models. However, recent advances in the field of analytics may enhance the prediction of CHD risk beyond the FRS. Here, we propose a model based on an artificial neural network (ANN) for predicting CHD risk with respect to the Framingham Heart Study (FHS) dataset. The performance of this model was compared to that of the FRS. Methods: A sample of 3066 subjects from the FHS offspring cohort was subjected to an ANN. A multilayer perceptron ANN architecture was used and the lift, gains, receiver operating characteristic (ROC), and precision-recall predicted by the ANN were compared with those of the FRS. Results: The lift and gain curves of the ANN model outperformed those of the FRS model in terms of top percentiles. The ROC curve showed that, for higher risk scores, the ANN model had higher sensitivity and higher specificity than those of the FRS model, although its area under the curve (AUC) was lower. For the precision-recall measures, the ANN generated significantly better results than the FRS with a higher AUC. Conclusions: The findings suggest that the ANN model is a promising approach for predicting CHD risk and a good screening procedure to identify high-risk subjects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助0001采纳,获得10
1秒前
yy2023发布了新的文献求助10
1秒前
3秒前
领导范儿应助QiaoHL采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
yawong完成签到,获得积分10
6秒前
linxiang发布了新的文献求助10
6秒前
LG发布了新的文献求助10
6秒前
脑洞疼应助张雨兴采纳,获得10
7秒前
7秒前
7秒前
8秒前
芒果儿椰椰完成签到,获得积分10
8秒前
8秒前
大模型应助Rita采纳,获得10
8秒前
9秒前
芯芯今天读文献了吗完成签到,获得积分10
9秒前
orixero应助Phyllis采纳,获得10
9秒前
000完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
ki驳回了Akirus应助
10秒前
zz完成签到 ,获得积分10
10秒前
蘇尼Ai发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
11秒前
Ava应助yawong采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
Owen应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
BowieHuang应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751919
求助须知:如何正确求助?哪些是违规求助? 5471387
关于积分的说明 15372166
捐赠科研通 4891119
什么是DOI,文献DOI怎么找? 2630143
邀请新用户注册赠送积分活动 1578330
关于科研通互助平台的介绍 1534331