Online Pricing and Trading of Private Data in Correlated Queries

差别隐私 计算机科学 后悔 利用 推荐系统 数据挖掘 计算机安全 情报检索 机器学习
作者
Hui Cai,Fan Ye,Yuanyuan Yang,Yanmin Zhu,Jie Li,Fu Xiao
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (3): 569-585 被引量:17
标识
DOI:10.1109/tpds.2021.3095238
摘要

With the commoditization of private data, data trading in consideration of user privacy protection has become a fascinating research topic. The trading for private web browsing histories brings huge economic value to data consumers when leveraged by targeted advertising. And the online pricing of these private data further helps achieve more realistic data trading. In this paper, we study the trading and pricing of multiple correlated queries on private web browsing history data at the same time. We propose CTRADE, which is a novel online data CommodiTization fRamework for trAding multiple correlateD queriEs over private data. CTRADE first devises a modified matrix mechanism to perturb query answers. It especially quantifies privacy loss under the relaxation of classical differential privacy and a newly devised mechanism with relaxed matrix sensitivity, and further compensates data owners for their diverse privacy losses in a satisfying manner. CTRADE then proposes an ellipsoid-based query pricing mechanism according to a given linear market value model, which exploits the features of the ellipsoid to explore and exploit the close-optimal dynamic price at each round. In particular, the proposed mechanism produces a low cumulative regret, which is quadratic in the dimension of the feature vector and logarithmic in the number of total rounds. Through real-data based experiments, our analysis and evaluation results demonstrate that CTRADE balances total error and privacy preferences well within acceptable running time, indeed produces a convergent cumulative regret with more rounds, and also achieves all desired economic properties of budget balance, individual rationality, and truthfulness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mn略略略完成签到,获得积分10
刚刚
冰魂应助lulu采纳,获得20
1秒前
学术通zzz发布了新的文献求助10
3秒前
搜集达人应助现代柠檬采纳,获得10
4秒前
5秒前
5秒前
6秒前
在水一方应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得20
8秒前
所所应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得50
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
wgw完成签到,获得积分10
9秒前
10秒前
芥子完成签到,获得积分10
10秒前
11秒前
hxh完成签到 ,获得积分10
11秒前
asd发布了新的文献求助10
11秒前
CT发布了新的文献求助10
12秒前
科目三应助花Cheung采纳,获得10
13秒前
13秒前
波比大王发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
17秒前
勋出色发布了新的文献求助10
17秒前
17秒前
1111发布了新的文献求助20
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814903
求助须知:如何正确求助?哪些是违规求助? 3358983
关于积分的说明 10399256
捐赠科研通 3076557
什么是DOI,文献DOI怎么找? 1689851
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608