A machine-learning-based method to predict adverse events in patients with dilated cardiomyopathy and severely reduced ejection fractions

医学 不利影响 接收机工作特性 心脏病学 内科学 曲线下面积 扩张型心肌病 心力衰竭 射血分数 心脏移植 移植 舒张期 血压
作者
Shenglei Shu,Ziming Hong,Qinmu Peng,Xiaoyue Zhou,Tianjng Zhang,Jing Wang,Chuansheng Zheng
出处
期刊:British Journal of Radiology [Wiley]
卷期号:94 (1127) 被引量:10
标识
DOI:10.1259/bjr.20210259
摘要

Patients with dilated cardiomyopathy (DCM) and severely reduced left ventricular ejection fractions (LVEFs) are at very high risks of experiencing adverse cardiac events. A machine learning (ML) method could enable more effective risk stratification for these high-risk patients by incorporating various types of data. The aim of this study was to build an ML model to predict adverse events including all-cause deaths and heart transplantation in DCM patients with severely impaired LV systolic function.One hundred and eighteen patients with DCM and severely reduced LVEFs (<35%) were included. The baseline clinical characteristics, laboratory data, electrocardiographic, and cardiac magnetic resonance (CMR) features were collected. Various feature selection processes and classifiers were performed to select an ML model with the best performance. The predictive performance of tested ML models was evaluated using the area under the curve (AUC) of the receiver operating characteristic curve using 10-fold cross-validation.Twelve patients died, and 17 patients underwent heart transplantation during the median follow-up of 508 days. The ML model included systolic blood pressure, left ventricular end-systolic and end-diastolic volume indices, and late gadolinium enhancement (LGE) extents on CMR imaging, and a support vector machine was selected as a classifier. The model showed excellent performance in predicting adverse events in DCM patients with severely reduced LVEF (the AUC and accuracy values were 0.873 and 0.763, respectively).This ML technique could effectively predict adverse events in DCM patients with severely reduced LVEF.The ML method has superior ability in risk stratification in severe DCM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
落寞怀蕊发布了新的文献求助10
1秒前
suanlafen完成签到 ,获得积分10
1秒前
Feng5945完成签到 ,获得积分10
1秒前
小王爱芒果完成签到,获得积分10
2秒前
li发布了新的文献求助30
2秒前
2秒前
ZX完成签到,获得积分10
3秒前
yuan完成签到,获得积分10
3秒前
Akim应助认真的不评采纳,获得10
3秒前
geyuanhong完成签到,获得积分10
4秒前
4秒前
小贝壳要快乐吖完成签到,获得积分10
4秒前
5秒前
Kerwin完成签到,获得积分10
5秒前
科研小白完成签到 ,获得积分10
5秒前
动漫大师发布了新的文献求助10
7秒前
露亮完成签到,获得积分10
8秒前
二尖瓣发布了新的文献求助10
10秒前
爱静静应助Kerwin采纳,获得10
10秒前
10秒前
10秒前
Graham完成签到,获得积分10
10秒前
vadfdfb完成签到,获得积分10
10秒前
露亮发布了新的文献求助10
11秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
11秒前
小兔子发布了新的文献求助100
12秒前
xliang233完成签到 ,获得积分10
12秒前
Archy发布了新的文献求助10
13秒前
brown完成签到,获得积分10
14秒前
14秒前
qqqq22完成签到,获得积分10
14秒前
14秒前
梅赛德斯完成签到,获得积分10
16秒前
星辰大海应助穿梭效应采纳,获得10
16秒前
Bright完成签到 ,获得积分10
17秒前
ch3oh完成签到,获得积分10
18秒前
守夜人发布了新的文献求助10
18秒前
田田完成签到,获得积分10
19秒前
商毛毛发布了新的文献求助10
19秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801238
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330869
捐赠科研通 3063228
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763743