Preoperative computed tomography-based tumoral radiomic features prediction for overall survival in resectable non-small cell lung cancer

接收机工作特性 医学 列线图 无线电技术 肺癌 阶段(地层学) 比例危险模型 放射科 人工智能 核医学 肿瘤科 内科学 计算机科学 生物 古生物学
作者
Bo Peng,Kaiyu Wang,Ran Xu,Congying Guo,Tong Lu,Yongchao Li,Yiqiao Wang,Chenghao Wang,Xiaoyan Chang,Zhiping Shen,Jiaxin Shi,Chengyu Xu,Linyou Zhang
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:13 被引量:8
标识
DOI:10.3389/fonc.2023.1131816
摘要

The purpose of this study was to evaluate whether preoperative radiomics features could meliorate risk stratification for the overall survival (OS) of non-small cell lung cancer (NSCLC) patients.After rigorous screening, the 208 NSCLC patients without any pre-operative adjuvant therapy were eventually enrolled. We segmented the 3D volume of interest (VOI) based on malignant lesion of computed tomography (CT) imaging and extracted 1542 radiomics features. Interclass correlation coefficients (ICC) and LASSO Cox regression analysis were utilized to perform feature selection and radiomics model building. In the model evaluation phase, we carried out stratified analysis, receiver operating characteristic (ROC) curve, concordance index (C-index), and decision curve analysis (DCA). In addition, integrating the clinicopathological trait and radiomics score, we developed a nomogram to predict the OS at 1 year, 2 years, and 3 years, respectively.Six radiomics features, including gradient_glcm_InverseVariance, logarithm_firstorder_Median, logarithm_firstorder_RobustMeanAbsoluteDeviation, square_gldm_LargeDependenceEmphasis, wavelet_HLL_firstorder_Kurtosis, and wavelet_LLL_firstorder_Maximum, were selected to construct the radiomics signature, whose areas under the curve (AUCs) for 3-year prediction reached 0.857 in the training set (n=146) and 0.871 in the testing set (n=62). The results of multivariate analysis revealed that the radiomics score, radiological sign, and N stage were independent prognostic factors in NSCLC. Moreover, compared with clinical factors and the separate radiomics model, the established nomogram exhibited a better performance in predicting 3-year OS.Our radiomics model may provide a promising non-invasive approach for preoperative risk stratification and personalized postoperative surveillance for resectable NSCLC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
b15966013195发布了新的文献求助10
3秒前
3秒前
3秒前
赵毓萱发布了新的文献求助30
4秒前
ML墨离完成签到,获得积分10
4秒前
锅巴洋芋发布了新的文献求助30
6秒前
maxwell158发布了新的文献求助10
7秒前
代代发布了新的文献求助10
7秒前
NN完成签到,获得积分10
8秒前
小二郎应助虹虹采纳,获得10
9秒前
gez完成签到,获得积分10
10秒前
香蕉觅云应助kevinjy采纳,获得10
11秒前
科研通AI5应助赵大宝采纳,获得10
11秒前
今后应助b15966013195采纳,获得10
13秒前
19秒前
科研通AI5应助beituo采纳,获得10
19秒前
严yee完成签到,获得积分10
20秒前
21秒前
21秒前
24秒前
香蕉觅云应助魔幻蓉采纳,获得10
24秒前
Lizhe123完成签到,获得积分20
24秒前
大气夜山完成签到 ,获得积分10
25秒前
26秒前
26秒前
橘子小狗发布了新的文献求助10
27秒前
27秒前
29秒前
beituo完成签到,获得积分10
29秒前
xiaoxin发布了新的文献求助30
30秒前
虹虹发布了新的文献求助10
30秒前
31秒前
量子星尘发布了新的文献求助10
32秒前
冰魂应助楼一笑采纳,获得10
35秒前
程风破浪发布了新的文献求助10
35秒前
肖恩完成签到,获得积分10
38秒前
天天快乐应助橘子小狗采纳,获得10
39秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3863082
求助须知:如何正确求助?哪些是违规求助? 3405530
关于积分的说明 10645025
捐赠科研通 3129089
什么是DOI,文献DOI怎么找? 1725619
邀请新用户注册赠送积分活动 831127
科研通“疑难数据库(出版商)”最低求助积分说明 779615