68Ga-Prostate-Specific Membrane Antigen PET Radiomics For the Prediction of PostSurgical International Society of Urological Pathology Grade in Patients with Primary Prostate Cancer

医学 前列腺癌 前列腺切除术 无线电技术 前列腺 放射科 PET-CT 谷氨酸羧肽酶Ⅱ 正电子发射断层摄影术 核医学 癌症 内科学
作者
Samuele Ghezzo,Giorgio Brembilla,Tommaso Russo,Irene Gotuzzo,Erik Preza,Ana Maria Samanes Gajate,Paola Mapelli,Carolina Bezzi,Vito Cucchiara,Sofia Mongardi,Ilaria Neri,Giorgio Gandaglia,Francesco Montorsi,Alberto Briganti,Francesco De Cobelli,Paola Scifo,Maria Picchio
出处
期刊:European Medical Journal Urology [European Medical Journal]
标识
DOI:10.33590/emjurol/10303299
摘要

INTRODUCTION Radiomics has been proven effective for the characterisation of primary prostate cancer (PCa).1,2 However, the limited interpretability of the proposed models represents one of the major limitations in this field.3,4 This study investigated 68Ga-prostate-specific membrane antigen (PSMA) PET radiomics for the prediction of post-surgical International Society of Urological Pathology (ISUP) grade in patients with primary PCa, ensuring model interpretability. MATERIALS AND METHODS Forty-seven patients with PCa were examined with 68Ga-PSMA PET at the authors’ institution. Those patients were enrolled in this study prior to radical prostatectomy. Images were acquired using either PET/MRI or PET/CT. ISUP grade was available at both biopsy and radical prostatectomy for all patients. A radiologist manually segmented the whole prostate on PET images using the co-registered CT or MRI for anatomical localisation on 3D Slicer software (Brigham and Women’s Hospital, Boston, Massachusetts, USA).5 The whole prostate was used as volume of interest (VOI) to avoid the limitations of radiomics for small volumes.6 VOIs were normalised, resampled, and discretised. A total of 103 image biomarker standardisation initiative-compliant, radiomic features (RF) were extracted using PyRadiomics (Python Software Foundation, Beaverton, Oregon, USA).7 RFs were harmonised with the ComBat method8 to control for the scanner effect, and selected using the minimum redundancy maximum relevance algorithm. Combinations of the four most relevant RFs were used to train 12 radiomics machine learning models for the prediction of post-surgical ISUP ≥4 versus ISUP <4 that were validated by five-fold repeated stratified cross-validation. To ensure that results were not driven by spurious associations, two ad hoc control models were generated. The first one Creative Commons Attribution-Non Commercial 4.0 ● April 2023 ● Urology 37 EAU 2023 • Abstract had SUVmax and VOI volume as input (radiomics baseline), while the other was made by setting to zero all voxel values prior features extraction (PET zeros). Balanced accuracy, sensitivity, specificity, and positive and negative predictive values were collected. The performance of the best developed model was compared with that of ISUP grade biopsy. RESULTS ISUP grade at biopsy was upgraded in 9 out of 47 patients after prostatectomy, resulting in a balanced accuracy of 85.9%; sensitivity of 71.9%; specificity of 100.0%; positive predicted value of 100.0%; and negative predictive value of 62.5%. The best performing radiomic model yielded a balanced accuracy of 87.6%; sensitivity of 88.6%; specificity of 86.7%; positive predicted value of 94.0%; and negative predicted value of 82.5%. All radiomic models trained with at least two RFs (grey level size zone matrix; zone entropy and shape; least axis length) outperformed the control models. Conversely, no significant differences were found for radiomic models trained with two or more RFs (Mann–Whitney U test; p>0.05). See Table 1 for a detailed report of all the generated models’ performance. CONCLUSION These findings support the role of 68Ga-PSMA PET radiomics for the accurate and non-invasive prediction of post-surgical ISUP grade. Future multicentre studies will be needed to establish with certainty the accuracy and reproducibility of the radiomic signature proposed here.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
3秒前
5秒前
科研通AI5应助义气的钥匙采纳,获得10
5秒前
嗡嗡完成签到,获得积分10
6秒前
小高同学发布了新的文献求助10
6秒前
Clarenceed完成签到,获得积分10
6秒前
nancy发布了新的文献求助10
7秒前
AlexLee发布了新的文献求助10
7秒前
7秒前
完美世界应助又晴采纳,获得30
8秒前
eth完成签到 ,获得积分10
8秒前
sugar发布了新的文献求助10
8秒前
SciGPT应助小高同学采纳,获得10
10秒前
852应助Ricardo采纳,获得10
11秒前
14秒前
某某完成签到 ,获得积分10
14秒前
15秒前
16秒前
Lucas应助还单身的冰旋采纳,获得30
16秒前
动漫大师发布了新的文献求助10
17秒前
AlexLee完成签到,获得积分10
18秒前
18秒前
糊涂一时完成签到 ,获得积分10
19秒前
卢卢卢发布了新的文献求助10
21秒前
又晴发布了新的文献求助30
22秒前
QQ完成签到 ,获得积分10
22秒前
Lea发布了新的文献求助10
23秒前
糊涂的青烟完成签到 ,获得积分10
26秒前
27秒前
帅气哈密瓜完成签到,获得积分20
28秒前
结实大白完成签到,获得积分10
30秒前
31秒前
zzyl完成签到,获得积分10
33秒前
顾矜应助wst采纳,获得10
33秒前
33秒前
hgyudetaaE关注了科研通微信公众号
37秒前
agent完成签到 ,获得积分10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779404
求助须知:如何正确求助?哪些是违规求助? 3324954
关于积分的说明 10220585
捐赠科研通 3040099
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798721
科研通“疑难数据库(出版商)”最低求助积分说明 758522