Metabolic Anomaly Appearance Aware U-Net for Automatic Lymphoma Segmentation in Whole-Body PET/CT Scans

人工智能 分割 计算机科学 一致性(知识库) 模式识别(心理学) PET-CT 正电子发射断层摄影术 放射科 医学
作者
Tianyu Shi,Huiyan Jiang,Meng Wang,Zhaoshuo Diao,Guoxu Zhang,Yu‐Dong Yao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (5): 2465-2476 被引量:3
标识
DOI:10.1109/jbhi.2023.3248099
摘要

Positron emission tomography-computed tomography (PET/CT) is an essential imaging instrument for lymphoma diagnosis and prognosis. PET/CT image based automatic lymphoma segmentation is increasingly used in the clinical community. U-Net-like deep learning methods have been widely used for PET/CT in this task. However, their performance is limited by the lack of sufficient annotated data, due to the existence of tumor heterogeneity. To address this issue, we propose an unsupervised image generation scheme to improve the performance of another independent supervised U-Net for lymphoma segmentation by capturing metabolic anomaly appearance (MAA). Firstly, we propose an anatomical-metabolic consistency generative adversarial network (AMC-GAN) as an auxiliary branch of U-Net. Specifically, AMC-GAN learns normal anatomical and metabolic information representations using co-aligned whole-body PET/CT scans. In the generator of AMC-GAN, we propose a complementary attention block to enhance the feature representation of low-intensity areas. Then, the trained AMC-GAN is used to reconstruct the corresponding pseudo-normal PET scans to capture MAAs. Finally, combined with the original PET/CT images, MAAs are used as the prior information for improving the performance of lymphoma segmentation. Experiments are conducted on a clinical dataset containing 191 normal subjects and 53 patients with lymphomas. The results demonstrate that the anatomical-metabolic consistency representations obtained from unlabeled paired PET/CT scans can be helpful for more accurate lymphoma segmentation, which suggest the potential of our approach to support physician diagnosis in practical clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mistletoe完成签到 ,获得积分10
1秒前
kevinjy完成签到,获得积分10
2秒前
4秒前
4秒前
5秒前
5秒前
xiaoxie发布了新的文献求助20
8秒前
范医生01完成签到,获得积分10
8秒前
友好胜完成签到 ,获得积分10
9秒前
薯愿发布了新的文献求助10
9秒前
学术底层发布了新的文献求助10
10秒前
10秒前
曾阿牛发布了新的文献求助10
15秒前
整齐芷文完成签到,获得积分10
16秒前
赘婿应助露亮采纳,获得10
16秒前
16秒前
MoNesy发布了新的文献求助150
16秒前
学术底层完成签到,获得积分10
17秒前
ruyunlong发布了新的文献求助10
18秒前
天真怜晴完成签到,获得积分10
20秒前
腼腆的高丽完成签到,获得积分10
29秒前
酷波er应助quzhenzxxx采纳,获得10
29秒前
小丁同学应助聆(*^_^*)采纳,获得10
31秒前
鸣笛应助疯狂的翅膀采纳,获得10
31秒前
knn完成签到 ,获得积分10
34秒前
MeSs完成签到 ,获得积分10
37秒前
kei完成签到,获得积分10
38秒前
如意2023完成签到 ,获得积分10
39秒前
柯一一应助能干的豆仔采纳,获得10
39秒前
为什么不学习完成签到,获得积分10
39秒前
嘛呱完成签到,获得积分10
40秒前
无花果应助科研通管家采纳,获得10
40秒前
40秒前
shinysparrow应助科研通管家采纳,获得200
40秒前
大个应助科研通管家采纳,获得10
40秒前
yar应助科研通管家采纳,获得10
40秒前
852应助科研通管家采纳,获得10
40秒前
FashionBoy应助科研通管家采纳,获得10
40秒前
脑洞疼应助科研通管家采纳,获得30
40秒前
英姑应助科研通管家采纳,获得10
40秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899758
求助须知:如何正确求助?哪些是违规求助? 3444367
关于积分的说明 10834793
捐赠科研通 3169337
什么是DOI,文献DOI怎么找? 1751092
邀请新用户注册赠送积分活动 846457
科研通“疑难数据库(出版商)”最低求助积分说明 789206