水生生态系统
生态系统
环境科学
环境资源管理
地理
生态学
生物
作者
Yaohui Bai,Hui Lin,Chenchen Wang,Qiaojuan Wang,Jiuhui Qu
标识
DOI:10.1016/j.jes.2023.03.012
摘要
Traditional river health assessment relies on limited water quality indices and representative organism activity, but does not comprehensively obtain biotic and abiotic information of the ecosystem. Here, we propose a new approach to evaluate the ecological and health risks of river aquatic ecosystems. First, detailed physicochemical and biological characterization of a river ecosystem can be obtained through pollutant determination (especially emerging pollutants) and DNA/RNA sequencing. Second, supervised machine learning can be applied to perform classification analysis of characterization data and ascertain river ecosystem ecology and health. Our proposed methodology transforms river ecosystem health assessment and can be applied in river management.
科研通智能强力驱动
Strongly Powered by AbleSci AI