Novel BiOBr/Bi2S3 high-low junction prepared by molten salt method for boosting photocatalytic degradation and H2O2 production

光催化 材料科学 熔盐 化学工程 带隙 异质结 结晶度 冶金 纳米技术 光电子学 复合材料 催化作用 化学 工程类 生物化学
作者
Shishi Shen,Xibao Li,Yingtang Zhou,Lu Han,Yu Xie,Fang Deng,Juntong Huang,Zhi Chen,Zhijun Feng,Jilin Xu,Fan Dong
出处
期刊:Journal of Materials Science & Technology [Elsevier BV]
卷期号:155: 148-159 被引量:88
标识
DOI:10.1016/j.jmst.2023.03.006
摘要

The molten salt method focuses on improving the crystallinity of synthetic materials and avoiding the high energy consumption of traditional synthesis processes. In this work, a novel BiOBr/Bi2S3 high-low junction with large contact area was constructed by the molten salt method combined with the ion exchange strategy. Its unique energy band structure and new charge transfer mechanism realize the rapid migration of photogenerated charges between different components. Specifically, Bi2S3 was grown on BiOBr in situ by a high-temperature molten salt reaction. Due to the deep valence band position of BiOBr and the narrow band gap of Bi2S3, an intrinsic internal electric field and band bending are produced at the interface, forming a high-low junction photocatalyst with an intimate interface. In addition, the BiOBr/Bi2S3 composite maintains a high oxidation potential and produces high and robust photocatalytic oxidation activity. In the molten state, the close binding of BiOBr and Bi2S3 can be promoted through the ion-exchange strategy, resulting in excellent photocatalytic degradation rates of bisphenol A and tetracycline and in-situ generation of H2O2. Finally, the mechanism of carriers separation and transfer in BiOBr/Bi2S3 high-low junction is also discussed. Density functional theory (DFT) results found that the improvement of O2 adsorption ability would promote the occurrence of oxygen reduction reaction (ORR), and make positive contributions to the enhanced H2O2 production activity. This study will provide a new perspective for broadening the spectral response range of Bi-based photocatalytic materials and preparing high-low junction photocatalysts with dense interface by the molten salt method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张张张完成签到 ,获得积分10
2秒前
SciGPT应助jiabaoyu采纳,获得10
2秒前
jovrtic发布了新的文献求助10
3秒前
真实的新瑶完成签到,获得积分10
3秒前
刘企盼完成签到,获得积分10
4秒前
爱学习的小王完成签到,获得积分10
4秒前
天天向上发布了新的文献求助10
4秒前
am完成签到,获得积分10
4秒前
qiujunchu发布了新的文献求助200
5秒前
6秒前
6秒前
小迷糊完成签到,获得积分10
7秒前
典雅西牛发布了新的文献求助10
7秒前
月亮之下完成签到 ,获得积分10
7秒前
荀煜祺完成签到,获得积分10
8秒前
啦啦啦哟完成签到,获得积分10
8秒前
成就莞完成签到,获得积分10
8秒前
好人一生平安完成签到,获得积分10
8秒前
大美女完成签到,获得积分10
8秒前
椰子完成签到 ,获得积分10
8秒前
炒米粉完成签到,获得积分10
8秒前
我是大美女完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
夏虫完成签到,获得积分10
11秒前
12秒前
山月完成签到,获得积分10
13秒前
海棠先雪完成签到,获得积分10
13秒前
14秒前
Hancock完成签到 ,获得积分10
14秒前
夜雨潇潇完成签到,获得积分10
15秒前
Akim应助liang采纳,获得10
15秒前
酷波er应助小海采纳,获得10
15秒前
wxy发布了新的文献求助10
15秒前
16秒前
16秒前
积极废物完成签到 ,获得积分10
16秒前
SYLH应助风趣的小鸽子采纳,获得10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785057
求助须知:如何正确求助?哪些是违规求助? 3330436
关于积分的说明 10246107
捐赠科研通 3045806
什么是DOI,文献DOI怎么找? 1671735
邀请新用户注册赠送积分活动 800750
科研通“疑难数据库(出版商)”最低求助积分说明 759644