YOLO-UAV: Object Detection Method of Unmanned Aerial Vehicle Imagery Based on Efficient Multi-Scale Feature Fusion

计算机科学 人工智能 目标检测 计算机视觉 特征(语言学) 最小边界框 骨干网 特征提取 深度学习 模式识别(心理学) 图像(数学) 计算机网络 哲学 语言学
作者
C.-K. Ma,Yanyun Fu,Deyong Wang,Rui Guo,Xueyi Zhao,Jian Fang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 126857-126878 被引量:12
标识
DOI:10.1109/access.2023.3329713
摘要

As Unmanned Aerial Vehicle (UAV) remote sensing technology progresses, the utilization of deep learning in UAV imagery object detection has become more prevalent. However, detecting small targets in complex backgrounds and distinguishing dense targets remains a major challenge. To address these issues and improve object detection efficiency, this study proposes an UAV imagery object detection method called YOLO-UAV by optimizing YOLOv5. YOLO-UAV first reconstructs the backbone and feature fusion networks by simplifying the network structure and reducing computational burden. The employment of a Dense_CSPDarknet53 backbone network, fashioned via the incorporation of dense connections, facilitates the extraction of latent image information through the recurrent utilization of features. In the Neck structure, an efficient feature fusion block with structural re-parameterization and ELAN strategies is integrated to effectively reduce interference from complex background noise while extracting more accurate and rich features. In addition, by proposing GS-Decoupled Head, this approach diminishes the parameter count of the decoupled head without compromising accuracy. It also separates classification tasks from regression tasks to lessen the influence of task disparities on prediction bias. To tackle the discrepancy between positive and negative samples in bounding box regression tasks, this study introduces a new loss function, Focal-ECIoU, capable of expediting network convergence and improve model positioning ability. Experimental findings from the public VisDrone2019 dataset indicate that YOLO-UAV outperforms other advanced object detection methods in comprehensive performance. Compared with the baseline model YOLOv5s, YOLO-UAV increased mAP0.5 from 35.1% to 46.7%, while mAP0.5:0.95 increased from 19.1% to 27.4%. For small-scale targets, AP small increased from 10.2% to 17.3%. The experiment proves that YOLO-UAV performs well in improving object detection accuracy and has strong generalization ability, satisfying the practical requirements of UAV imagery object detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳄鱼发布了新的文献求助10
刚刚
哈拉少不哈拉少完成签到,获得积分10
5秒前
万能图书馆应助伯约采纳,获得10
8秒前
慕青应助测距开关阀采纳,获得20
8秒前
自由的雁关注了科研通微信公众号
10秒前
10秒前
14秒前
17秒前
17秒前
天天快乐应助Kira采纳,获得30
19秒前
伍寒烟发布了新的文献求助10
19秒前
科研通AI2S应助稳重岩采纳,获得10
20秒前
alooof完成签到,获得积分10
22秒前
dreamwalk完成签到 ,获得积分10
22秒前
24秒前
alooof发布了新的文献求助10
24秒前
小七完成签到,获得积分10
27秒前
ocean完成签到,获得积分10
31秒前
艺霖大王完成签到 ,获得积分10
33秒前
rissun发布了新的文献求助80
33秒前
34秒前
34秒前
善学以致用应助天桂星采纳,获得10
34秒前
科研通AI5应助kkkkkoi采纳,获得10
38秒前
39秒前
39秒前
39秒前
明明发布了新的文献求助30
41秒前
陈秋完成签到,获得积分10
41秒前
Kira给Kira的求助进行了留言
42秒前
42秒前
隐形曼青应助郭博采纳,获得10
43秒前
HanJinyu发布了新的文献求助10
44秒前
啧啧啧发布了新的文献求助10
45秒前
CodeCraft应助小元采纳,获得10
45秒前
街道办事部完成签到,获得积分10
48秒前
51秒前
51秒前
yunidesuuu完成签到,获得积分10
52秒前
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777347
求助须知:如何正确求助?哪些是违规求助? 3322714
关于积分的说明 10211237
捐赠科研通 3038044
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098