A Trend-Granulation-Based Fuzzy C-Means Algorithm for Clustering Interval-Valued Time Series

聚类分析 初始化 算法 模糊逻辑 造粒 动态时间归整 模糊聚类 粒度计算 数据挖掘 计算机科学 火焰团簇 数学 模式识别(心理学) CURE数据聚类算法 人工智能 粗集 物理 经典力学 程序设计语言
作者
Zonglin Yang,Fusheng Yu,Witold Pedrycz,Huilin Yang,Yuqing Tang,Chenxi Ouyang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (3): 1263-1277 被引量:1
标识
DOI:10.1109/tfuzz.2023.3321921
摘要

Along with the abundant appearance of interval-valued time series (ITS), the study on ITS clustering, especially on shape-based ITS clustering, is becoming increasingly important. As an effective approach to extracting trend information in time series, fuzzy trend-granulation addresses the needs of shape-based ITS clustering. However, when extracting trend information in ITS, unequal-size granules are inevitably produced, which makes ITS clustering difficult and challenging. Facing with this issue, this paper aims to generalize the widely used Fuzzy C-Means (FCM) algorithm to a fuzzy trend-granulation based FCM algorithm for ITS clustering. To this end, a suite of algorithms including ITS segmenting, segment merging and granule building algorithms are firstly developed for fuzzy trend-granulation of ITS, with which the given ITS are transformed into granular ITS which consist of double linear fuzzy information granules (DLFIGs) and may be of different lengths. With the defined distance between DLFIGs, the distance between granular ITS is further developed through the dynamic time warping (DTW) algorithm. In designing the fuzzy trend-granulation based FCM algorithm, the key step is to design the method for updating cluster prototypes to cope with the unequal lengths of granular ITS. Weighted DTW barycenter averaging (wDBA) method is a previously adopted prototype updating approach with the drawback of hardly changing the lengths of prototypes, which often makes prototypes less representative. Thus, a granule splitting and merging algorithm is designed to resolve this issue. Additionally, a prototype initialization method is also proposed to improve the clustering performance. The proposed fuzzy trend-granulation based FCM algorithm for clustering ITS, being a typical shape-based clustering algorithm, exhibits superior performance which is validated by the ablation experiments as well as the comparative experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醉书生应助PYM采纳,获得20
1秒前
善学以致用应助烂漫剑采纳,获得10
1秒前
Pinkie完成签到 ,获得积分10
1秒前
2秒前
嗨害害发布了新的文献求助10
4秒前
隐形曼青应助明钟达采纳,获得10
4秒前
研友_Z60ObL完成签到,获得积分10
5秒前
jkdajsk发布了新的文献求助10
5秒前
小乐比发布了新的文献求助10
7秒前
7秒前
8秒前
塵埃发布了新的文献求助10
8秒前
9秒前
wanci应助嗨害害采纳,获得10
10秒前
脑洞疼应助wdw2501采纳,获得10
11秒前
jkdajsk完成签到,获得积分10
12秒前
SIHUONIANHUA发布了新的文献求助10
12秒前
12秒前
李亦书发布了新的文献求助10
13秒前
star发布了新的文献求助10
14秒前
滕皓轩发布了新的文献求助10
14秒前
14秒前
14秒前
17秒前
明钟达发布了新的文献求助10
18秒前
18秒前
18秒前
20秒前
Pinkie发布了新的文献求助30
20秒前
Sven发布了新的文献求助30
21秒前
21秒前
Martijn发布了新的文献求助10
21秒前
liyangyang0816完成签到,获得积分10
22秒前
1111111发布了新的文献求助10
23秒前
RichardZ发布了新的文献求助10
23秒前
orixero应助SIHUONIANHUA采纳,获得10
24秒前
star发布了新的文献求助10
25秒前
崔崔发布了新的文献求助30
26秒前
27秒前
阿彤完成签到,获得积分20
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794706
求助须知:如何正确求助?哪些是违规求助? 3339486
关于积分的说明 10296205
捐赠科研通 3056183
什么是DOI,文献DOI怎么找? 1676910
邀请新用户注册赠送积分活动 804935
科研通“疑难数据库(出版商)”最低求助积分说明 762226