亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study

布里氏评分 比例危险模型 梯度升压 判别式 人工智能 随机森林 一致性 生存分析 机器学习 时间点 逻辑回归 医学 统计 回顾性队列研究 计算机科学 Boosting(机器学习) 缺少数据 数据挖掘 内科学 数学 哲学 美学
作者
Xulin Yang,Hang Qiu,Liya Wang,Xiaodong Wang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e44417-e44417 被引量:8
标识
DOI:10.2196/44417
摘要

Machine learning (ML) methods have shown great potential in predicting colorectal cancer (CRC) survival. However, the ML models introduced thus far have mainly focused on binary outcomes and have not considered the time-to-event nature of this type of modeling.This study aims to evaluate the performance of ML approaches for modeling time-to-event survival data and develop transparent models for predicting CRC-specific survival.The data set used in this retrospective cohort study contains information on patients who were newly diagnosed with CRC between December 28, 2012, and December 27, 2019, at West China Hospital, Sichuan University. We assessed the performance of 6 representative ML models, including random survival forest (RSF), gradient boosting machine (GBM), DeepSurv, DeepHit, neural net-extended time-dependent Cox (or Cox-Time), and neural multitask logistic regression (N-MTLR) in predicting CRC-specific survival. Multiple imputation by chained equations method was applied to handle missing values in variables. Multivariable analysis and clinical experience were used to select significant features associated with CRC survival. Model performance was evaluated in stratified 5-fold cross-validation repeated 5 times by using the time-dependent concordance index, integrated Brier score, calibration curves, and decision curves. The SHapley Additive exPlanations method was applied to calculate feature importance.A total of 2157 patients with CRC were included in this study. Among the 6 time-to-event ML models, the DeepHit model exhibited the best discriminative ability (time-dependent concordance index 0.789, 95% CI 0.779-0.799) and the RSF model produced better-calibrated survival estimates (integrated Brier score 0.096, 95% CI 0.094-0.099), but these are not statistically significant. Additionally, the RSF, GBM, DeepSurv, Cox-Time, and N-MTLR models have comparable predictive accuracy to the Cox Proportional Hazards model in terms of discrimination and calibration. The calibration curves showed that all the ML models exhibited good 5-year survival calibration. The decision curves for CRC-specific survival at 5 years showed that all the ML models, especially RSF, had higher net benefits than default strategies of treating all or no patients at a range of clinically reasonable risk thresholds. The SHapley Additive exPlanations method revealed that R0 resection, tumor-node-metastasis staging, and the number of positive lymph nodes were important factors for 5-year CRC-specific survival.This study showed the potential of applying time-to-event ML predictive algorithms to help predict CRC-specific survival. The RSF, GBM, Cox-Time, and N-MTLR algorithms could provide nonparametric alternatives to the Cox Proportional Hazards model in estimating the survival probability of patients with CRC. The transparent time-to-event ML models help clinicians to more accurately predict the survival rate for these patients and improve patient outcomes by enabling personalized treatment plans that are informed by explainable ML models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www完成签到 ,获得积分10
3秒前
wanci应助陈时懿采纳,获得10
3秒前
9秒前
科研狗完成签到 ,获得积分10
10秒前
14秒前
完美世界应助p13508397190采纳,获得30
19秒前
20秒前
跳跃野狼发布了新的文献求助10
20秒前
小宋爱睡觉完成签到 ,获得积分10
21秒前
liyx发布了新的文献求助10
24秒前
30秒前
30秒前
小二郎应助芬芬采纳,获得10
31秒前
阳光的玉米完成签到,获得积分10
32秒前
cnbhhhhh发布了新的文献求助10
35秒前
35秒前
37秒前
lzy发布了新的文献求助10
40秒前
43秒前
53秒前
隐形曼青应助四月天采纳,获得10
59秒前
芬芬发布了新的文献求助10
1分钟前
1分钟前
cheezburger发布了新的文献求助10
1分钟前
1分钟前
可靠的老鼠完成签到,获得积分10
1分钟前
范振杰发布了新的文献求助10
1分钟前
cheezburger完成签到,获得积分10
1分钟前
恒温失效关注了科研通微信公众号
1分钟前
1分钟前
绝尘发布了新的文献求助20
1分钟前
英俊的铭应助cnbhhhhh采纳,获得10
1分钟前
四月天发布了新的文献求助10
1分钟前
斯寜应助绝尘采纳,获得10
1分钟前
科研通AI2S应助younger采纳,获得10
1分钟前
1分钟前
科研通AI2S应助范振杰采纳,获得10
1分钟前
1分钟前
卡琳完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346424
关于积分的说明 10329241
捐赠科研通 3062881
什么是DOI,文献DOI怎么找? 1681222
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763702