SERS mapping combined with chemometrics, for accurate quantification of methotrexate from patient samples

单变量 化学计量学 偏最小二乘回归 分析物 平滑的 计算机科学 线性判别分析 多元统计 模式识别(心理学) 人工智能 数据挖掘 化学 色谱法 机器学习 计算机视觉
作者
Peihuan He,Elodie Dumont,Yaman Göksel,Roman Slipets,Kjeld Schmiegelow,Quansheng Chen,Kinga Zór,Anja Boisen
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:305: 123536-123536 被引量:7
标识
DOI:10.1016/j.saa.2023.123536
摘要

Despite the technological development in Raman instrumentation that has democratized access to 2D sample scanning capabilities, most quantitative surface-enhanced Raman scattering (SERS) analyses are still performed by only acquiring a single or a few spectra per sample and performing univariate data analysis on those. This strategy can however reach its limit when analytes need to be detected and quantified in complex matrices. In that case, surface fouling and competition between the target analyte and interfering compounds can impair univariate SERS data analysis, underlining the need for a more in-depth data analysis strategy based on exploiting of full-spectrum information. In this paper, a multivariate data analysis strategy was developed, for analyzing SERS maps of methotrexate (MTX) from patient samples, including all steps from baseline correction, selection of wavelength, and the relevant pixels in the map (image threshold segmentation), as well as quantitative model construction based on partial-least squares regression. Among the different baseline correction methods evaluated, standard normal variable transformation and Savitzky-Golay smoothing proved to be more suitable, while the genetic algorithm wavelength screening method was able to screen out MTX-related SERS spectral regions more efficiently. Importantly, with the here-developed process, it was sufficient to use MTX-spiked commercial serum when building quantitative models, removing the need to work with MTX-spiked patient samples, and consequently enabling time- and resource-saving quantitative analyses. Besides, the developed multivariate data analysis approach showed superior performances compared with univariate analysis, with 30 % improved sensitivity (detection limit of 5.7 µM), 25 % higher reproducibility (average relative standard variation of 15.6 %), and 110 % better accuracy (average prediction error of -10.5 %).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
big ben完成签到 ,获得积分10
4秒前
5秒前
忆修完成签到,获得积分10
6秒前
飞快的珩完成签到,获得积分10
8秒前
摇光完成签到,获得积分10
9秒前
慕青应助小趴菜采纳,获得10
14秒前
善学以致用应助害羞凤灵采纳,获得10
15秒前
17秒前
xxyhh发布了新的文献求助10
19秒前
22秒前
23秒前
带领大家发布了新的文献求助10
24秒前
炮仗完成签到 ,获得积分10
27秒前
顺利绮波发布了新的文献求助10
27秒前
徐卷卷完成签到,获得积分10
27秒前
29秒前
kevin完成签到,获得积分10
29秒前
小郭完成签到,获得积分10
31秒前
导师老八完成签到,获得积分10
32秒前
34秒前
活在当下发布了新的文献求助10
34秒前
带领大家完成签到,获得积分10
34秒前
顺利绮波完成签到,获得积分10
35秒前
bkagyin应助range采纳,获得10
37秒前
小趴菜发布了新的文献求助10
38秒前
Lucas应助豆子采纳,获得10
40秒前
43秒前
导师老八发布了新的文献求助10
45秒前
z7777777完成签到,获得积分10
46秒前
小趴菜发布了新的文献求助10
49秒前
Deftfaker完成签到 ,获得积分10
53秒前
54秒前
56秒前
追寻飞风发布了新的文献求助10
57秒前
58秒前
丘比特应助科研通管家采纳,获得10
59秒前
李健应助科研通管家采纳,获得10
59秒前
赘婿应助科研通管家采纳,获得10
59秒前
科目三应助科研通管家采纳,获得10
59秒前
852应助科研通管家采纳,获得10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781269
求助须知:如何正确求助?哪些是违规求助? 3326758
关于积分的说明 10228346
捐赠科研通 3041778
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799134
科研通“疑难数据库(出版商)”最低求助积分说明 758751