谐振器
物理
超材料
稳健性(进化)
电子
光子晶体
计算物理学
量子力学
光学
化学
生物化学
基因
作者
Wenhui Wang,Antonio Günzler,Bodo D. Wilts,Ullrich Steiner,Matthias Saba
出处
期刊:Advanced photonics
[SPIE - International Society for Optical Engineering]
日期:2023-09-04
卷期号:5 (05)
被引量:3
标识
DOI:10.1117/1.ap.5.5.056005
摘要
Photonic bound states in the continuum (BICs) are spatially localized modes with infinitely long lifetimes, which exist within a radiation continuum at discrete energy levels. These states have been explored in various systems, including photonic and phononic crystal slabs, metasurfaces, waveguides, and integrated circuits. Robustness and availability of the BICs are important aspects for fully taming the BICs toward practical applications. Here, we propose a generic mechanism to realize BICs that exist by first principles free of fine parameter tuning based on non-Maxwellian double-net metamaterials (DNMs). An ideal warm hydrodynamic double plasma (HDP) fluid model provides a homogenized description of DNMs and explains the robustness of the BICs found herein. In the HDP model, these are standing wave formations made of electron acoustic waves (EAWs), which are pure charge oscillations with vanishing electromagnetic fields. EAW BICs have various advantages, such as (i) frequency-comb-like collection of BICs free from normal resonances; (ii) robustness to symmetry-breaking perturbations and formation of quasi-BICs with an ultrahigh Q-factor even if subject to disorder; and (iii) giving rise to subwavelength microcavity resonators hosting quasi-BIC modes with an ultrahigh Q-factor.
科研通智能强力驱动
Strongly Powered by AbleSci AI