Mobile Robot Path Planning Based on Fused Multi-Strategy White Shark Optimisation Algorithm

运动规划 模拟退火 数学优化 计算机科学 人口 移动机器人 避障 局部最优 算法 网格参考 网格 适应性 路径(计算) 机器人 人工智能 数学 生态学 人口学 几何学 社会学 程序设计语言 生物
作者
Dazhang You,Junjie Yu,Zhiyuan Jia,Yepeng Zhang,Zhiyuan Yang
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:15 (15): 8453-8453
标识
DOI:10.3390/app15158453
摘要

Addressing the limitations of existing path planning algorithms for mobile robots in complex environments, such as poor adaptability, low convergence efficiency, and poor path quality, this study establishes a clear connection between mobile robots and real-world challenges such as unknown environments, dynamic obstacle avoidance, and smooth motion through innovative strategies. A novel multi-strategy fusion white shark optimization algorithm is proposed, focusing on actual scenario requirements, to provide optimal solutions for mobile robot path planning. First, the Chaotic Elite Pool strategy is employed to generate an elite population, enhancing population diversity and improving the quality of initial solutions, thereby boosting the algorithm’s global search capability. Second, adaptive weights are introduced, and the traditional simulated annealing algorithm is improved to obtain the Rapid Annealing Method. The improved simulated annealing algorithm is then combined with the White Shark algorithm to avoid getting stuck in local optima and accelerate convergence speed. Finally, third-order Bézier curves are used to smooth the path. Path length and path smoothness are used as fitness evaluation metrics, and an evaluation function is established in conjunction with a non-complete model that reflects actual motion to assess the effectiveness of path planning. Simulation results show that on the simple 20 × 20 grid map, the fusion of the Fused Multi-strategy White Shark Optimisation algorithm (FMWSO) outperforms WSO, D*, A*, and GWO by 8.43%, 7.37%, 2.08%, and 2.65%, respectively, in terms of path length. On the more complex 40 × 40 grid map, it improved by 6.48%, 26.76%, 0.95%, and 2.05%, respectively. The number of turning points was the lowest in both maps, and the path smoothness was lower. The algorithm’s runtime is optimal on the 20 × 20 map, outperforming other algorithms by 40.11%, 25.93%, 31.16%, and 9.51%, respectively. On the 40 × 40 map, it is on par with A*, and outperforms WSO, D*, and GWO by 14.01%, 157.38%, and 3.48%, respectively. The path planning performance is significantly better than other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vinny发布了新的文献求助10
刚刚
刘肖发布了新的文献求助10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助50
1秒前
gakiki发布了新的文献求助10
1秒前
Yu发布了新的文献求助10
2秒前
共享精神应助lwwwl采纳,获得10
2秒前
novi发布了新的文献求助10
3秒前
昵称儿完成签到,获得积分10
3秒前
清脆松完成签到,获得积分10
3秒前
de完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
英俊的铭应助yyds采纳,获得10
5秒前
6秒前
oho发布了新的文献求助10
6秒前
蓝莓味蛋挞完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
雷桑完成签到,获得积分10
8秒前
Tong完成签到,获得积分10
9秒前
magnum完成签到 ,获得积分10
9秒前
机智平灵关注了科研通微信公众号
9秒前
搜集达人应助新兴领袖采纳,获得10
10秒前
ZeKaWa应助新兴领袖采纳,获得10
10秒前
领导范儿应助新兴领袖采纳,获得10
10秒前
打打应助新兴领袖采纳,获得10
10秒前
orixero应助新兴领袖采纳,获得10
11秒前
我是老大应助悦耳妙旋采纳,获得10
11秒前
dingyuting发布了新的文献求助10
11秒前
CipherSage应助新兴领袖采纳,获得10
11秒前
Hello应助新兴领袖采纳,获得10
11秒前
隐形曼青应助新兴领袖采纳,获得10
11秒前
充电宝应助新兴领袖采纳,获得10
11秒前
上官若男应助新兴领袖采纳,获得10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082142
求助须知:如何正确求助?哪些是违规求助? 4299568
关于积分的说明 13396361
捐赠科研通 4123386
什么是DOI,文献DOI怎么找? 2258311
邀请新用户注册赠送积分活动 1262584
关于科研通互助平台的介绍 1196616