作者
            
                Dazhang You,Junjie Yu,Zhiyuan Jia,Yepeng Zhang,Zhiyuan Yang            
         
                    
            摘要
            
            Addressing the limitations of existing path planning algorithms for mobile robots in complex environments, such as poor adaptability, low convergence efficiency, and poor path quality, this study establishes a clear connection between mobile robots and real-world challenges such as unknown environments, dynamic obstacle avoidance, and smooth motion through innovative strategies. A novel multi-strategy fusion white shark optimization algorithm is proposed, focusing on actual scenario requirements, to provide optimal solutions for mobile robot path planning. First, the Chaotic Elite Pool strategy is employed to generate an elite population, enhancing population diversity and improving the quality of initial solutions, thereby boosting the algorithm’s global search capability. Second, adaptive weights are introduced, and the traditional simulated annealing algorithm is improved to obtain the Rapid Annealing Method. The improved simulated annealing algorithm is then combined with the White Shark algorithm to avoid getting stuck in local optima and accelerate convergence speed. Finally, third-order Bézier curves are used to smooth the path. Path length and path smoothness are used as fitness evaluation metrics, and an evaluation function is established in conjunction with a non-complete model that reflects actual motion to assess the effectiveness of path planning. Simulation results show that on the simple 20 × 20 grid map, the fusion of the Fused Multi-strategy White Shark Optimisation algorithm (FMWSO) outperforms WSO, D*, A*, and GWO by 8.43%, 7.37%, 2.08%, and 2.65%, respectively, in terms of path length. On the more complex 40 × 40 grid map, it improved by 6.48%, 26.76%, 0.95%, and 2.05%, respectively. The number of turning points was the lowest in both maps, and the path smoothness was lower. The algorithm’s runtime is optimal on the 20 × 20 map, outperforming other algorithms by 40.11%, 25.93%, 31.16%, and 9.51%, respectively. On the 40 × 40 map, it is on par with A*, and outperforms WSO, D*, and GWO by 14.01%, 157.38%, and 3.48%, respectively. The path planning performance is significantly better than other algorithms.