亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SSPPI: Cross-Modality Enhanced Protein–Protein Interaction Prediction From Sequence and Structure Perspectives

模态(人机交互) 序列(生物学) 蛋白质结构预测 计算机科学 人工智能 计算生物学 蛋白质结构 化学 生物 遗传学 生物化学
作者
Xiangpeng Bi,Wenjian Ma,Xiangpeng Bi,Weigang Lu,Zhiqiang Wei,Shugang Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-15
标识
DOI:10.1109/tnnls.2025.3599927
摘要

Recent advances have shown great promise in mining multimodal protein knowledge for better protein-protein interaction (PPI) prediction by enriching the representation of proteins. However, existing solutions lack a comprehensive consideration of both local patterns and global dependencies in proteins, hindering the full exploitation of modal information. Additionally, the inherent disparities between modalities are often disregarded, which may lead to inferior modality complementarity effects. To address these issues, we propose a cross-modality enhanced PPI prediction method from the perspectives of protein sequence and structure modalities, namely SSPPI. In this framework, our main contribution is that we integrate both sequence and structural modalities of proteins and employ an alignment and fusion method between modalities to further generate more comprehensive protein representations for PPI prediction. Specifically, we design two modal representation modules (Convformer and Graphormer) tailored for protein sequence and structure modalities, respectively, to enhance the quality of modal representation. Subsequently, we introduce a Cross-modality enhancer module to achieve alignment and fusion between modalities, thereby generating more informative modal joint representations. Finally, we devise a cross-protein fusion (CPF) module to model residue interaction processes between proteins, thereby enriching the joint representation of protein pairs. Extensive experimentation on four benchmark datasets demonstrates that our proposed model surpasses all current state-of-the-art (SOTA) methods. The source codes are publicly available at the following link https://github.com/bixiangpeng/SSPPI/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Echo发布了新的文献求助10
1秒前
渟柠完成签到 ,获得积分10
10秒前
由道罡完成签到 ,获得积分10
16秒前
小陶完成签到 ,获得积分10
23秒前
Echo完成签到,获得积分10
24秒前
sailingluwl完成签到,获得积分10
25秒前
wzgkeyantong完成签到,获得积分10
30秒前
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
小马甲应助George采纳,获得10
1分钟前
123关注了科研通微信公众号
1分钟前
谢謝完成签到,获得积分10
1分钟前
1分钟前
苗条的小蜜蜂完成签到 ,获得积分10
1分钟前
123完成签到,获得积分10
1分钟前
1分钟前
yy发布了新的文献求助10
2分钟前
2分钟前
2分钟前
聪明怜阳发布了新的文献求助10
2分钟前
JazzWon完成签到,获得积分10
2分钟前
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
大刘发布了新的文献求助10
3分钟前
3分钟前
积极向卉完成签到 ,获得积分10
3分钟前
3分钟前
Hello应助RC采纳,获得10
3分钟前
Tracy完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590487
求助须知:如何正确求助?哪些是违规求助? 4674761
关于积分的说明 14795246
捐赠科研通 4632228
什么是DOI,文献DOI怎么找? 2532775
邀请新用户注册赠送积分活动 1501279
关于科研通互助平台的介绍 1468634