Identification and validation of an explainable machine learning model for vascular depression diagnosis in the older adults: a multicenter cohort study

医学 萧条(经济学) 鉴定(生物学) 队列 队列研究 老年学 内科学 植物 宏观经济学 经济 生物
作者
Ran Zhang,Li Tian,Fan Fan,Haoying He,Liuyi Lan,Dong Sun,Zhipeng Xu,Sisi Peng,Jing Cao,Juan Xu,Xiaoxiang Peng,Ming Lei,Hao Song,Junjian Zhang
出处
期刊:BMC Medicine [BioMed Central]
卷期号:23 (1)
标识
DOI:10.1186/s12916-025-04283-9
摘要

Vascular depression (VaDep) is a prevalent affective disorder in older adults that significantly impacts functional status and quality of life. Early identification and intervention are crucial but largely insufficient in clinical practice due to inconspicuous depressive symptoms mostly, heterogeneous imaging manifestations, and the lack of definitive peripheral biomarkers. This study aimed to develop and validate an interpretable machine learning (ML) model for VaDep to serve as a clinical support tool. This study included 602 participants from Wuhan in China divided into 236 VaDep patients and 366 controls for training and internal validation from July 2020 to October 2023. An independent dataset of 171 participants from surrounding areas was used for external validation. We collected clinical data, neuropsychological assessments, blood test results, and MRI scans to develop and refine ML models through cross-validation. Feature reduction was implemented to simplify the models without compromising their performance, with validation achieved through internal and external datasets. The SHapley Additive exPlanations method was used to enhance model interpretability. The Light Gradient Boosting Machine (LGBM) model outperformed from the selected 6 ML algorithms based on performance metrics. An optimized, interpretable LGBM model with 8 key features, including white matter hyperintensities score, age, vascular endothelial growth factor, interleukin-6, brain-derived neurotrophic factor, tumor necrosis factor-alpha levels, lacune counts, and serotonin level, demonstrated high diagnostic accuracy in both internal (AUROC = 0.937) and external (AUROC = 0.896) validations. The final model also achieved, and marginally exceeded, clinician-level diagnostic performance. Our research established a consistent and explainable ML framework for identifying VaDep in older adults, utilizing comprehensive clinical data. The 8 characteristics identified in the final LGBM model provide new insights for further exploration of VaDep mechanisms and emphasize the need for enhanced focus on early identification and intervention in this vulnerable group. More attention needs to be paid to the affective health of older adults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
longmad完成签到,获得积分10
1秒前
方方完成签到 ,获得积分10
2秒前
浮游应助可爱的英姑采纳,获得10
5秒前
粗犷的谷秋完成签到 ,获得积分10
5秒前
6秒前
福娃完成签到,获得积分10
8秒前
窝窝头完成签到 ,获得积分10
9秒前
nianshu完成签到 ,获得积分10
10秒前
北枳完成签到 ,获得积分10
11秒前
Kyra12完成签到,获得积分10
12秒前
Sleven完成签到,获得积分10
12秒前
明亮曼卉完成签到 ,获得积分10
14秒前
阿尼完成签到 ,获得积分10
14秒前
foyefeng完成签到,获得积分0
15秒前
SC完成签到 ,获得积分10
17秒前
加油完成签到 ,获得积分10
18秒前
hebhm完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助20
23秒前
毛毛完成签到,获得积分10
25秒前
xiaoliu完成签到,获得积分10
26秒前
默存完成签到,获得积分10
26秒前
ATYS完成签到,获得积分10
29秒前
zhang完成签到 ,获得积分10
33秒前
sora完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
37秒前
Yynnn完成签到 ,获得积分10
39秒前
哈哈环完成签到 ,获得积分10
40秒前
祁灵枫完成签到,获得积分10
40秒前
健忘捕完成签到 ,获得积分10
43秒前
awei完成签到 ,获得积分20
46秒前
47秒前
量子星尘发布了新的文献求助50
47秒前
48秒前
青己完成签到 ,获得积分10
49秒前
yilin完成签到 ,获得积分10
50秒前
nuoran完成签到,获得积分10
51秒前
阿白完成签到 ,获得积分10
53秒前
ANG完成签到 ,获得积分10
53秒前
周怀宇发布了新的文献求助10
53秒前
吉吉国王完成签到 ,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4984717
求助须知:如何正确求助?哪些是违规求助? 4235476
关于积分的说明 13190147
捐赠科研通 4028244
什么是DOI,文献DOI怎么找? 2203744
邀请新用户注册赠送积分活动 1215823
关于科研通互助平台的介绍 1133406