Applying Bayesian Multilevel Modeling to Single Trial Dynamics: A Demonstration in Aversive Conditioning

贝叶斯概率 心理学 一般化 人工智能 贝叶斯推理 生成模型 计算机科学 机器学习 数学 数学分析 生成语法
作者
Andrew H. Farkas,Judith Cediel Escobar,Faith Gilbert,Christian Panitz,Mingzhou Ding,Andreas Keil
出处
期刊:Human Brain Mapping [Wiley]
卷期号:46 (14)
标识
DOI:10.1002/hbm.70360
摘要

ABSTRACT Aversive conditioning changes visuocortical responses to conditioned cues, and the generalization of these changes to perceptually similar cues may provide mechanistic insights into anxiety and fear disorders. Yet, as in many areas of cognitive neuroscience, testing hypotheses about trial‐by‐trial dynamics in conditioning paradigms is challenged by poor single‐trial signal‐to‐noise ratios (SNR), missing trials, and inter‐individual differences. The present technical report demonstrates how a state‐of‐the‐art Bayesian workflow can overcome these issues, using a preliminary sample of simultaneously recorded EEG‐fMRI data. A preliminary group of observers ( N = 24) viewed circular gratings varying in orientation, with only one orientation paired with an aversive outcome (noxious electric pulse). Gratings were flickered at 15 Hz to evoke steady‐state visual evoked potentials (ssVEPs), recorded with 31 channels of EEG in an MRI scanner. First, the benefits of a Bayesian multilevel structure are demonstrated on the fMRI data by improving a standard fMRI first‐level multiple regression. Next, the Bayesian modeling approach is demonstrated by applying a theory‐driven learning model to the EEG data. The multilevel structure of the Bayesian learning model informs and constrains estimates per participant, providing an interpretable generative model. In the example analysis provided in this report, it showed superior cross‐validation accuracy and provided insights into participant‐level learning dynamics. It also isolated the generalization effects of conditioning, providing improved statistical certainty. Lastly, missing trials were interpolated and weighted appropriately using the full model's structure. This is a critical aspect for single‐trial analyses of simultaneously recorded physiological measures because each added measure will typically increase the number of trials missing a complete set of observations. The present report aims to illustrate the utility of this analytical framework. It shows how models may be iteratively built and compared in a modern Bayesian workflow. Future models may use different conceptualizations of learning, allow integration of clinically relevant factors, and enable the fusion of different simultaneous recordings such as EEG, autonomic, behavioral, and hemodynamic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向翰完成签到,获得积分10
刚刚
long完成签到,获得积分10
1秒前
默默蓝完成签到,获得积分20
1秒前
aoaoao发布了新的文献求助10
2秒前
小二郎应助研一采纳,获得10
3秒前
兔子发布了新的文献求助10
3秒前
3秒前
木子完成签到 ,获得积分10
5秒前
nanan完成签到,获得积分10
5秒前
5秒前
研友_VZG7GZ应助冰阔罗采纳,获得30
7秒前
7秒前
123发布了新的文献求助10
7秒前
7秒前
深情安青应助学术机器1采纳,获得10
8秒前
8秒前
9秒前
yunyueqixun完成签到 ,获得积分10
9秒前
9秒前
fxxx发布了新的文献求助10
10秒前
老实芯完成签到,获得积分10
10秒前
Hyeri发布了新的文献求助10
10秒前
10秒前
司空豁完成签到,获得积分0
11秒前
凹凸先森发布了新的文献求助10
11秒前
vv发布了新的文献求助10
12秒前
核桃发布了新的文献求助10
12秒前
乌漆嘛黑发布了新的文献求助10
13秒前
14秒前
felinus完成签到,获得积分10
14秒前
TANG发布了新的文献求助10
14秒前
14秒前
liuwei发布了新的文献求助10
14秒前
Estrella发布了新的文献求助10
14秒前
茶米发布了新的文献求助10
14秒前
王讯完成签到,获得积分10
15秒前
15秒前
冰阔罗完成签到,获得积分10
16秒前
16秒前
困惑完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4758671
求助须知:如何正确求助?哪些是违规求助? 4100535
关于积分的说明 12687803
捐赠科研通 3815382
什么是DOI,文献DOI怎么找? 2106317
邀请新用户注册赠送积分活动 1130968
关于科研通互助平台的介绍 1009320