CRL: An Efficient Autonomous Exploration Framework for Large-Scale Environments With Contrastive-Driven Reinforcement Learning

强化学习 比例(比率) 计算机科学 钢筋 人机交互 人工智能 心理学 地理 社会心理学 地图学
作者
B. Gao,Hao Chen,Quan Liu,Hanqiang Deng,Jian Huang,Yan‐Jun Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (12): 20080-20091
标识
DOI:10.1109/tnnls.2025.3597164
摘要

Autonomous exploration in large-scale environments is impeded by two critical challenges, namely, suboptimal viewpoint selection resulting from inadequate feature extraction and the continuously rising computational costs as the environment expands. Existing methods struggle to simultaneously tackle these dual challenges within cohesive frameworks. In response, we present an efficient autonomous exploration framework with contrastive-driven reinforcement learning. Inspired by human cognitive mechanisms that reinforce crucial information recognition through contrast, our study implements contrastive constraints on nodes of varying utility levels within high-dimensional feature spaces, achieving a decoupling of their latent representations. This capability empowers decision networks to explicitly capture key regional characteristics, thereby enhancing the precision of optimal viewpoint selection. Moreover, to mitigate the issues of backtracking and redundant exploration, we design specialized training rules that enforce effective action constraints, further enhancing viewpoint selection. Additionally, we propose a novel graph rarefaction algorithm to tackle computational costs, simplifying computational complexities while maintaining performance standards. Compared to the state-of-the-art (SOTA) approaches, our method achieves 6.7% shorter path lengths, while also demonstrates robust generalization capabilities through real-world robotic experiments across multiple real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leoskrrr完成签到,获得积分10
1秒前
谨慎的幻悲完成签到,获得积分10
2秒前
科研通AI6应助李博士采纳,获得10
3秒前
4秒前
忘尘完成签到 ,获得积分20
5秒前
josh完成签到,获得积分10
7秒前
8秒前
爆米花应助能干的烧鹅采纳,获得10
10秒前
花南星完成签到,获得积分10
11秒前
12秒前
苏九发布了新的文献求助10
12秒前
13秒前
嵇老五发布了新的文献求助10
15秒前
wBw完成签到,获得积分0
16秒前
Longy完成签到,获得积分10
17秒前
17秒前
泽灵完成签到,获得积分10
18秒前
KELE发布了新的文献求助10
19秒前
22秒前
23秒前
Orange应助王蝶采纳,获得10
24秒前
落雪无痕完成签到,获得积分10
24秒前
27秒前
28秒前
BB完成签到,获得积分10
28秒前
所所应助烂漫新儿采纳,获得10
31秒前
BB发布了新的文献求助10
31秒前
31秒前
Tink完成签到,获得积分0
35秒前
左白易发布了新的文献求助10
35秒前
云淡风清完成签到 ,获得积分10
35秒前
37秒前
史小霜发布了新的文献求助10
40秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
李爱国应助科研通管家采纳,获得10
40秒前
浮游应助科研通管家采纳,获得10
40秒前
传奇3应助科研通管家采纳,获得10
40秒前
彭于晏应助科研通管家采纳,获得10
40秒前
浮游应助科研通管家采纳,获得10
40秒前
小蘑菇应助科研通管家采纳,获得10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560462
求助须知:如何正确求助?哪些是违规求助? 4645669
关于积分的说明 14675889
捐赠科研通 4586829
什么是DOI,文献DOI怎么找? 2516548
邀请新用户注册赠送积分活动 1490164
关于科研通互助平台的介绍 1461007