Graph Convolution Based Cross-Network Multiscale Feature Fusion for Deep Vessel Segmentation

子网 分割 计算机科学 人工智能 模式识别(心理学) 图形 特征(语言学) 图像分割 深度学习 计算机视觉 判别式 理论计算机科学 计算机安全 语言学 哲学
作者
Gangming Zhao,Kongming Liang,Chengwei Pan,Fandong Zhang,Xianpeng Wu,Xinyang Hu,Yizhou Yu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (1): 183-195 被引量:30
标识
DOI:10.1109/tmi.2022.3207093
摘要

Vessel segmentation is widely used to help with vascular disease diagnosis. Vessels reconstructed using existing methods are often not sufficiently accurate to meet clinical use standards. This is because 3D vessel structures are highly complicated and exhibit unique characteristics, including sparsity and anisotropy. In this paper, we propose a novel hybrid deep neural network for vessel segmentation. Our network consists of two cascaded subnetworks performing initial and refined segmentation respectively. The second subnetwork further has two tightly coupled components, a traditional CNN-based U-Net and a graph U-Net. Cross-network multi-scale feature fusion is performed between these two U-shaped networks to effectively support high-quality vessel segmentation. The entire cascaded network can be trained from end to end. The graph in the second subnetwork is constructed according to a vessel probability map as well as appearance and semantic similarities in the original CT volume. To tackle the challenges caused by the sparsity and anisotropy of vessels, a higher percentage of graph nodes are distributed in areas that potentially contain vessels while a higher percentage of edges follow the orientation of potential nearby vessels. Extensive experiments demonstrate our deep network achieves state-of-the-art 3D vessel segmentation performance on multiple public and in-house datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助魔幻蓉采纳,获得10
刚刚
22完成签到,获得积分20
1秒前
1秒前
Gu发布了新的文献求助10
2秒前
开朗的小蘑菇完成签到,获得积分20
2秒前
Mic应助wzz采纳,获得30
2秒前
2秒前
今后应助爱啃大虾采纳,获得10
2秒前
CC应助medaW采纳,获得10
3秒前
Regulus发布了新的文献求助10
3秒前
黑海岸学者完成签到,获得积分10
3秒前
帅哥冲冲冲啊完成签到,获得积分10
3秒前
大模型应助wcy采纳,获得10
3秒前
维时发布了新的文献求助10
4秒前
研友_VZG7GZ应助青灿笑采纳,获得10
4秒前
大巨奆硕完成签到,获得积分10
4秒前
积极的魔镜关注了科研通微信公众号
5秒前
coco发布了新的文献求助20
5秒前
量子星尘发布了新的文献求助10
6秒前
李李李发布了新的文献求助10
6秒前
幸福的丑发布了新的文献求助10
6秒前
天真的初蓝完成签到,获得积分10
6秒前
二姑娘发布了新的文献求助10
7秒前
8秒前
9秒前
yqwang发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
张头发完成签到,获得积分10
9秒前
清爽的路灯完成签到,获得积分10
10秒前
10秒前
passerby发布了新的文献求助10
11秒前
亦楚bank完成签到 ,获得积分10
11秒前
万能图书馆应助好困采纳,获得100
12秒前
12秒前
12秒前
zzz完成签到,获得积分10
12秒前
大模型应助努力的咩咩采纳,获得10
12秒前
英姑应助erere采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546619
求助须知:如何正确求助?哪些是违规求助? 4632425
关于积分的说明 14626866
捐赠科研通 4574039
什么是DOI,文献DOI怎么找? 2508073
邀请新用户注册赠送积分活动 1484624
关于科研通互助平台的介绍 1455784