Comparative Analysis of Machine Learning and Deep Learning Algorithms for Assessing Agricultural Product Quality Using NIRS

稳健性(进化) 人工智能 线性判别分析 偏最小二乘回归 预处理器 计算机科学 机器学习 模式识别(心理学) 算法 化学 生物化学 基因
作者
Jiwen Ren,Yuming Xiong,Xinyu Chen,Yong Hao
出处
期刊:Sensors [MDPI AG]
卷期号:24 (16): 5438-5438 被引量:6
标识
DOI:10.3390/s24165438
摘要

The success of near-infrared spectroscopy (NIRS) analysis hinges on the precision and robustness of the calibration model. Shallow learning (SL) algorithms like partial least squares discriminant analysis (PLS-DA) often fall short in capturing the interrelationships between adjacent spectral variables, and the analysis results are easily affected by spectral noise, which dramatically limits the breadth and depth of applications of NIRS. Deep learning (DL) methods, with their capacity to discern intricate features from limited samples, have been progressively integrated into NIRS. In this paper, two discriminant analysis problems, including wheat kernels and Yali pears as examples, and several representative calibration models were used to research the robustness and effectiveness of the model. Additionally, this article proposed a near-infrared calibration model, which was based on the Gramian angular difference field method and coordinate attention convolutional neural networks (G-CACNNs). The research results show that, compared with SL, spectral preprocessing has a smaller impact on the analysis accuracy of consensus learning (CL) and DL, and the latter has the highest analysis accuracy in the modeling results using the original spectrum. The accuracy of G-CACNNs in two discrimination tasks was 98.48% and 99.39%. Finally, this research compared the performance of various models under noise to evaluate the robustness and noise resistance of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lsl发布了新的文献求助10
刚刚
多情孤兰发布了新的文献求助10
1秒前
2秒前
北斋完成签到,获得积分10
2秒前
2秒前
自由百合发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
5秒前
6秒前
Zhijiuz发布了新的文献求助10
6秒前
lnx发布了新的文献求助10
7秒前
在水一方应助超级凌旋采纳,获得10
7秒前
自信青筠发布了新的文献求助10
7秒前
8秒前
9秒前
TANGGUO完成签到,获得积分10
9秒前
10秒前
wuxiaoshu完成签到 ,获得积分10
10秒前
baitaowl完成签到 ,获得积分10
10秒前
whiteside发布了新的文献求助30
11秒前
zhouenen发布了新的文献求助10
12秒前
12秒前
17852573662完成签到,获得积分10
12秒前
yznfly举报要减肥的婷冉求助涉嫌违规
12秒前
大模型应助Zhijiuz采纳,获得10
13秒前
稚生w发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
科研通AI6应助自然的雪珍采纳,获得10
15秒前
16秒前
17秒前
17秒前
李明雪发布了新的文献求助30
17秒前
Orange应助GXC采纳,获得10
18秒前
19秒前
李健应助moshi采纳,获得10
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626754
求助须知:如何正确求助?哪些是违规求助? 4712621
关于积分的说明 14960174
捐赠科研通 4782571
什么是DOI,文献DOI怎么找? 2554510
邀请新用户注册赠送积分活动 1516153
关于科研通互助平台的介绍 1476438