Automatic wild bird repellent system that is based on deep-learning-based wild bird detection and integrated with a laser rotation mechanism

机制(生物学) 旋转(数学) 人工智能 计算机科学 生态学 生物 物理 量子力学
作者
Yu‐Chieh Chen,Jing-Fang Chu,Kuangwen Hsieh,Tzung‐Han Lin,Pei‐Zen Chang,Yao-Chuan Tsai
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:3
标识
DOI:10.1038/s41598-024-66920-2
摘要

Abstract Wild bird repulsion is critical in agriculture because it helps avoid agricultural food losses and mitigates the risk of avian influenza. Wild birds transmit avian influenza in poultry farms and thus cause large economic losses. In this study, we developed an automatic wild bird repellent system that is based on deep-learning-based wild bird detection and integrated with a laser rotation mechanism. When a wild bird appears at a farm, the proposed system detects the bird’s position in an image captured by its detection unit and then uses a laser beam to repel the bird. The wild bird detection model of the proposed system was optimized for detecting small pixel targets, and trained through a deep learning method by using wild bird images captured at different farms. Various wild bird repulsion experiments were conducted using the proposed system at an outdoor duck farm in Yunlin, Taiwan. The statistical test results of our experimental data indicated that the proposed automatic wild bird repellent system effectively reduced the number of wild birds in the farm. The experimental results indicated that the developed system effectively repelled wild birds, with a high repulsion rate of 40.3% each day.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
不想说发布了新的文献求助10
1秒前
叶光大完成签到 ,获得积分10
1秒前
科研通AI2S应助hAFMET采纳,获得10
1秒前
2秒前
小遇发布了新的文献求助10
3秒前
AKYDXS完成签到,获得积分10
4秒前
liherong完成签到,获得积分10
4秒前
所所应助dangpengyichuan采纳,获得10
4秒前
5秒前
6秒前
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
迭阳发布了新的文献求助10
8秒前
8秒前
橘子叶发布了新的文献求助10
8秒前
细雨听风发布了新的文献求助10
9秒前
9秒前
传奇3应助carat采纳,获得10
10秒前
10秒前
11秒前
cxb发布了新的文献求助10
11秒前
yanliu95发布了新的文献求助10
11秒前
科研通AI6应助sun采纳,获得10
12秒前
13秒前
14秒前
黄柏柏完成签到,获得积分10
14秒前
14秒前
蓝白条纹狗蛋完成签到,获得积分20
15秒前
元谷雪发布了新的文献求助10
15秒前
16秒前
JamesPei应助竹萧采纳,获得10
16秒前
17秒前
Owen应助小李爱吃大西瓜采纳,获得10
17秒前
NexusExplorer应助112233cc采纳,获得10
18秒前
桐桐应助激昂的画笔采纳,获得10
18秒前
飞天土豆发布了新的文献求助10
19秒前
情怀应助ar采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496281
求助须知:如何正确求助?哪些是违规求助? 4594019
关于积分的说明 14443173
捐赠科研通 4526588
什么是DOI,文献DOI怎么找? 2480255
邀请新用户注册赠送积分活动 1464895
关于科研通互助平台的介绍 1437672