情态动词
计算机视觉
人工智能
对偶(语法数字)
计算机科学
图像分割
互补
图像(数学)
医学影像学
分割
图像处理
模式识别(心理学)
材料科学
基因
文学类
表型
艺术
化学
高分子化学
生物化学
作者
Dehui Xiang,Tao Peng,Yun Bian,Lang Chen,Jianbin Zeng,Fei Shi,Weifang Zhu,Xinjian Chen
标识
DOI:10.1109/tbme.2024.3467216
摘要
Multi-modal MR/CT image segmentation is an important task in disease diagnosis and treatment, but it is usually difficult to acquire aligned multi-modal images of a patient in clinical practice due to the high cost and specific allergic reactions to contrast agents. To address these issues, a task complementation framework is proposed to enable unpaired multi-modal image complementation learning in the training stage and single-modal image segmentation in the inference stage.
科研通智能强力驱动
Strongly Powered by AbleSci AI