Vibration displacement measurement of bridge structural models using image super-resolution reconstruction and visual object detection network

流离失所(心理学) 振动 桥(图论) 计算机科学 对象(语法) 人工智能 计算机视觉 图像(数学) 分辨率(逻辑) 声学 结构工程 物理 工程类 医学 心理学 内科学 心理治疗师
作者
Sen Wang,R. J. Yang,Mingfang Chen,Sen Lin,Sen Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad7e3a
摘要

Abstract Visual vibration measurement has emerged in the field of structural health monitoring in recent years, but it still has some shortcomings in terms of resolution, recognition rate and real-time performance. Considering the three aspects of recovering high-frequency image details, improving the compactness of the target bounding box, and reducing the computational time, we use the constructed image super-resolution reconstruction model and target detection model to measure the vibration displacement of the bridge structural model. First, we integrate the Transformer module into the Unet network with a simple structure. The Swin and Global Transformer Unet (SGTU) module constructed in this form can reduce the computational cost while reconstructing the large-resolution feature map target, and it can sharply edge information of the vibration target. We use the framework of the YOLOv5 algorithm as the backbone, and use the GhostBottleneck (GB) module to reduce the time for convolution operations to generate similar features. In addition, the proposed DWCBottleneck (DWCB) fusion module is also able to achieve high-level semantic fusion and network depth expansion with minimal computational cost. Finally, the center point offset of the bounding box predicted by the model can be used to obtain the displacement offset of the object in the image sequence. The position information of the target in the first frame image is used as the reference frame for calculating the offset, and the vibration displacement of the flexible structure in the image coordinate system is obtained by calculating the deviation of the displacement between the remaining frames and the first frame. We perform qualitative and quantitative comparisons in three aspects: video super-resolution reconstruction, visual detection robustness, and sensor vibration measurement displacement using a homemade vibration image dataset. The time-frequency domain displacement curves regressed by the visual vibration measurement algorithm are compared with the curves acquired after accelerometer acquisition, indicating the necessity of super-resolution reconstruction in visual vibration measurement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微卫星不稳定完成签到 ,获得积分10
2秒前
haidayu完成签到,获得积分10
3秒前
善学以致用应助Y1Zhou采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
hvivi6发布了新的文献求助10
4秒前
周冷之发布了新的文献求助10
4秒前
bkagyin应助霸气断秋采纳,获得10
7秒前
9秒前
10秒前
yzhilson发布了新的文献求助50
10秒前
pcr163应助轻松的蜜粉采纳,获得50
10秒前
10秒前
10秒前
SYLH应助戴衡霞采纳,获得10
10秒前
丘比特应助瓜子采纳,获得10
11秒前
SClcy完成签到 ,获得积分10
13秒前
13秒前
13秒前
嗷嗷嗷后发布了新的文献求助10
14秒前
nn发布了新的文献求助10
15秒前
15秒前
魏寒冰完成签到 ,获得积分10
17秒前
xyx发布了新的文献求助10
19秒前
ZXW完成签到,获得积分10
22秒前
嗷嗷嗷后完成签到 ,获得积分10
22秒前
SciGPT应助pollen06采纳,获得10
24秒前
27秒前
11122发布了新的文献求助10
29秒前
29秒前
jason93发布了新的文献求助10
30秒前
lllinsj发布了新的文献求助10
33秒前
34秒前
wanci应助宇宙尽头的餐馆采纳,获得30
37秒前
37秒前
快研出来了完成签到,获得积分10
37秒前
lll应助11122采纳,获得10
38秒前
尉迟衣发布了新的文献求助10
40秒前
jia完成签到,获得积分10
40秒前
艺_完成签到 ,获得积分10
41秒前
44秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4041686
求助须知:如何正确求助?哪些是违规求助? 3579198
关于积分的说明 11381382
捐赠科研通 3308048
什么是DOI,文献DOI怎么找? 1820174
邀请新用户注册赠送积分活动 893258
科研通“疑难数据库(出版商)”最低求助积分说明 815535