清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-Branch and Progressive Network for Low-Light Image Enhancement

计算机科学 人工智能 像素 计算机视觉 水准点(测量) 卷积神经网络 亮度 过程(计算) 模式识别(心理学) 光学 物理 大地测量学 地理 操作系统
作者
Kaibing Zhang,Cheng Yuan,Jie Li,Xinbo Gao,Minqi Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2295-2308 被引量:18
标识
DOI:10.1109/tip.2023.3266171
摘要

Low-light images incur several complicated degradation factors such as poor brightness, low contrast, color degradation, and noise. Most previous deep learning-based approaches, however, only learn the mapping relationship of single channel between the input low-light images and the expected normal-light images, which is insufficient enough to deal with low-light images captured under uncertain imaging environment. Moreover, too deeper network architecture is not conducive to recover low-light images due to extremely low values in pixels. To surmount aforementioned issues, in this paper we propose a novel multi-branch and progressive network (MBPNet) for low-light image enhancement. To be more specific, the proposed MBPNet is comprised of four different branches which build the mapping relationship at different scales. The followed fusion is performed on the outputs obtained from four different branches for the final enhanced image. Furthermore, to better handle the difficulty of delivering structural information of low-light images with low values in pixels, a progressive enhancement strategy is applied in the proposed method, where four convolutional long short-term memory networks (LSTM) are embedded in four branches and an recurrent network architecture is developed to iteratively perform the enhancement process. In addition, a joint loss function consisting of the pixel loss, the multi-scale perceptual loss, the adversarial loss, the gradient loss, and the color loss is framed to optimize the model parameters. To evaluate the effectiveness of proposed MBPNet, three popularly used benchmark databases are used for both quantitative and qualitative assessments. The experimental results confirm that the proposed MBPNet obviously outperforms other state-of-the-art approaches in terms of quantitative and qualitative results. The code will be available at https://github.com/kbzhang0505/MBPNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳的颤完成签到 ,获得积分10
15秒前
Karry完成签到 ,获得积分10
21秒前
善学以致用应助武雨寒采纳,获得10
21秒前
彦子完成签到 ,获得积分10
21秒前
我是老大应助科研通管家采纳,获得10
24秒前
美好灵寒完成签到 ,获得积分10
24秒前
Johnson完成签到 ,获得积分10
24秒前
baoxiaozhai完成签到 ,获得积分10
44秒前
孝顺的觅风完成签到 ,获得积分10
54秒前
54秒前
武雨寒发布了新的文献求助10
1分钟前
FloppyWow完成签到 ,获得积分10
1分钟前
shadow完成签到,获得积分10
1分钟前
无辜的行云完成签到 ,获得积分0
1分钟前
淡淡的元霜完成签到,获得积分10
1分钟前
linjunqi发布了新的文献求助10
1分钟前
1分钟前
yumiao发布了新的文献求助10
1分钟前
柔弱藏今发布了新的文献求助20
1分钟前
charih完成签到 ,获得积分10
2分钟前
化龙发布了新的文献求助10
2分钟前
linjunqi完成签到,获得积分10
2分钟前
加贝完成签到 ,获得积分10
2分钟前
大个应助武雨寒采纳,获得10
2分钟前
乒坛巨人完成签到 ,获得积分10
2分钟前
Zhangfu完成签到,获得积分10
2分钟前
qqaeao完成签到,获得积分10
2分钟前
orixero应助科研通管家采纳,获得10
2分钟前
番茄小超人2号完成签到 ,获得积分10
2分钟前
xiaosui完成签到 ,获得积分10
2分钟前
2分钟前
大尾巴鱼完成签到,获得积分10
2分钟前
武雨寒发布了新的文献求助10
2分钟前
monk完成签到 ,获得积分10
2分钟前
2分钟前
liuliu完成签到 ,获得积分10
2分钟前
士成发布了新的文献求助30
2分钟前
游艺完成签到 ,获得积分10
2分钟前
脑洞疼应助天真咖啡豆采纳,获得10
3分钟前
MQ完成签到 ,获得积分10
3分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819982
求助须知:如何正确求助?哪些是违规求助? 3362858
关于积分的说明 10418889
捐赠科研通 3081189
什么是DOI,文献DOI怎么找? 1695009
邀请新用户注册赠送积分活动 814799
科研通“疑难数据库(出版商)”最低求助积分说明 768522