Identification and validation of diagnostic biomarkers of coronary artery disease progression in type 1 diabetes via integrated computational and bioinformatics strategies

列线图 接收机工作特性 冠状动脉疾病 小桶 生物标志物 医学 基因 生物信息学 转录组 肿瘤科 生物 计算生物学 内科学 基因表达 遗传学
作者
Yufei Zhou,Chunjiang Liu,Zhongzheng Zhang,Jian Chen,Di Zhao,Linnan Li,Mingyue Tong,Gang Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:159: 106940-106940 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.106940
摘要

Our study aimed to identify early peripheral blood diagnostic biomarkers and elucidate the immune mechanisms of coronary artery disease (CAD) progression in patients with type 1 diabetes mellitus (T1DM). Three transcriptome datasets were retrieved from the Gene Expression Omnibus (GEO) database. Gene modules associated with T1DM were selected with weighted gene co-expression network analysis. Differentially expressed genes (DEGs) between CAD and acute myocardial infarction (AMI) peripheral blood tissues were identified using limma. Candidate biomarkers were selected with functional enrichment analysis, node gene selection from a constructed protein-protein interaction (PPI) network, and 3 machine learning algorithms. Candidate expression was compared, and the receiver operating characteristic curve (ROC) and nomogram were constructed. Immune cell infiltration was assessed with the CIBERSORT algorithm. A total of 1283 genes comprising 2 modules were detected as the most associated with T1DM. In addition, 451 DEGs related to CAD progression were identified. Among them, 182 were common to both diseases and mainly enriched in immune and inflammatory response regulation. The PPI network yielded 30 top node genes, and 6 were selected using the 3 machine learning algorithms. Upon validation, 4 genes (TLR2, CLEC4D, IL1R2, and NLRC4) were recognized as diagnostic biomarkers with the area under the curve (AUC) > 0.7. All 4 genes were positively correlated with neutrophils in patients with AMI. We identified 4 peripheral blood biomarkers and provided a nomogram for early diagnosing CAD progression to AMI in patients with T1DM. The biomarkers were positively associated with neutrophils, indicating potential therapeutic targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
didi完成签到,获得积分10
2秒前
3秒前
4秒前
学术通zzz发布了新的文献求助10
4秒前
天津中医药峰完成签到,获得积分10
5秒前
菠萝炒蛋加饭完成签到 ,获得积分10
6秒前
minino完成签到 ,获得积分10
7秒前
moon发布了新的文献求助10
9秒前
Judy完成签到 ,获得积分10
11秒前
15秒前
话哈哈完成签到,获得积分10
15秒前
su完成签到,获得积分10
19秒前
李健应助chrysan采纳,获得10
24秒前
顾矜应助ChencanFang采纳,获得20
24秒前
郝好完成签到 ,获得积分10
26秒前
29秒前
9℃完成签到 ,获得积分10
31秒前
sharks完成签到,获得积分10
32秒前
32秒前
天天快乐应助手可摘星辰采纳,获得10
33秒前
33秒前
33秒前
34秒前
lynn完成签到 ,获得积分10
35秒前
38秒前
123456完成签到 ,获得积分10
38秒前
学术通zzz发布了新的文献求助10
38秒前
王小乐发布了新的文献求助10
39秒前
一二发布了新的文献求助10
40秒前
黑糖珍珠完成签到 ,获得积分10
41秒前
Hello应助踏雪飞鸿采纳,获得10
41秒前
chrysan发布了新的文献求助10
42秒前
42秒前
46秒前
47秒前
cx完成签到 ,获得积分10
49秒前
稀饭发布了新的文献求助10
49秒前
ChencanFang发布了新的文献求助20
49秒前
50秒前
ll发布了新的文献求助10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323510
关于积分的说明 10214551
捐赠科研通 3038674
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315