Relational Conduction Graph Network for Intelligent Fault Diagnosis of Rotating Machines Under Small Fault Samples

断层(地质) 提取器 判别式 数据挖掘 图形 样品(材料) 计算机科学 相似性(几何) 节点(物理) 模式识别(心理学) 人工智能 工程类 理论计算机科学 图像(数学) 结构工程 地质学 色谱法 地震学 化学 工艺工程
作者
Zuoyi Chen,Xiaoqi Wang,Jun Wu,Chao Deng,Daode Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:8
标识
DOI:10.1109/tim.2023.3268665
摘要

Fault samples obtained in real-world environment are limited, which makes it hard to diagnose faults of rotating machines (RM) accurately by using the existing intelligent diagnosis methods. To solve the issue above, a new relational conduction graph network (RCGN) is proposed in this paper, which is trained on dataset produced in lab environment to identify fault types of the RM operated in real-world environments. First, feature extractor is constructed to mine fault features from input sample. Second, relational graph network is designed to treat each sample pair as a relational node, and then propagate and aggregate the similarities and relations between samples, so as to mine more discriminative relational characteristics from sample pairs. Moreover, a similarity function is introduced to assess whether the consisting samples in relational node are from the same class to determine fault types. Finally, extensive experiments on two datasets produced in real-world environments are used to validate the superior performance of the RCGN method. The results show that the RCGN method can correctly diagnose fault types of several RM operated in real-world environments, even when each fault type of these RM has only one sample. The diagnostic performance has been greatly improved as compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开放的聪展关注了科研通微信公众号
1秒前
风风风完成签到,获得积分20
1秒前
2秒前
酷波er应助自来也采纳,获得10
2秒前
2秒前
愉快的太阳完成签到 ,获得积分10
3秒前
锤你发布了新的文献求助10
3秒前
Hello应助开心的书蕾采纳,获得10
3秒前
3秒前
4秒前
SciGPT应助明年采纳,获得10
4秒前
共享精神应助SUNYAOSUNYAO采纳,获得10
4秒前
深情安青应助傅诗淇采纳,获得10
5秒前
Spy_R发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
慕青应助林雯青采纳,获得10
6秒前
6秒前
7秒前
7秒前
xiayiyi完成签到,获得积分20
8秒前
9秒前
9秒前
9秒前
Sunny发布了新的文献求助30
10秒前
11_aa完成签到 ,获得积分10
10秒前
10秒前
cc发布了新的文献求助10
11秒前
hoshi完成签到,获得积分20
11秒前
眼睛大芙发布了新的文献求助10
11秒前
ZhaoY完成签到,获得积分10
11秒前
华仔应助WYN采纳,获得10
11秒前
小兵大大怪完成签到,获得积分10
11秒前
11秒前
华仔应助rockxie采纳,获得10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661387
求助须知:如何正确求助?哪些是违规求助? 4838678
关于积分的说明 15095847
捐赠科研通 4820153
什么是DOI,文献DOI怎么找? 2579773
邀请新用户注册赠送积分活动 1534034
关于科研通互助平台的介绍 1492769