Machine Learning for Predicting Environmental Mobility Based on Retention Behavior

作者
Tobias Hulleman,Saer Samanipour,Paul R. Haddad,Cassandra Rauert,Elvis D. Okoffo,Kevin V. Thomas,Jake O’Brien
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:59 (43): 23339-23348
标识
DOI:10.1021/acs.est.5c07274
摘要

Very persistent and very mobile (vPvM) substances threaten the environment and human health. These chemicals can persist in aquatic systems and move rapidly due to their affinity for water over soil or other adsorbents. Chemical mobility is usually classified using the organic carbon-water partition coefficient (Koc), but experimental log Koc data are unavailable for most substances. With thousands of new chemicals entering the market annually, there is a growing need for advanced cheminformatics tools to prioritize substances of concern. Because reversed-phase liquid chromatography (RPLC) data are more widely available, they were used here as a proxy for environmental mobility. The organic modifier fraction at elution was applied to assign mobility labels to 146,902 chemicals from an RPLC data set. For each chemical, 881 PubChem fingerprints were computed to capture structural information. A random forest classifier was then trained to predict mobility from retention behavior and fingerprints. The model achieved F1 scores of 0.87, 0.81, and 0.96 for very mobile, mobile, and nonmobile classes, respectively, in the test set. Applied to all REACH-registered chemicals (n = 64,492), the model classified 20% as very mobile, 26% as mobile, and 53% as nonmobile, providing a scalable tool for early identification of vPvM substances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Zzzzz发布了新的文献求助10
刚刚
1秒前
2秒前
施耐德发布了新的文献求助10
2秒前
serendipity完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
Qyyy完成签到,获得积分10
2秒前
ffeiffei发布了新的文献求助10
3秒前
3秒前
3秒前
hyx完成签到,获得积分10
3秒前
Dirbly发布了新的文献求助10
3秒前
科研通AI2S应助hou采纳,获得10
3秒前
无情南琴发布了新的文献求助10
4秒前
小老板的手抓饼完成签到,获得积分10
4秒前
healer发布了新的文献求助10
4秒前
4秒前
yuan完成签到,获得积分10
4秒前
研友_VZG7GZ应助排骨帮帮主采纳,获得10
5秒前
5秒前
筝zheng完成签到,获得积分10
5秒前
Aan发布了新的文献求助10
5秒前
烟花应助拉长的幻雪采纳,获得10
5秒前
疯大仙外向太清完成签到,获得积分10
5秒前
April完成签到,获得积分10
6秒前
Fiona完成签到,获得积分10
6秒前
JamesPei应助lars采纳,获得10
7秒前
7秒前
7秒前
ZJFL发布了新的文献求助10
7秒前
火星上涫完成签到,获得积分10
7秒前
猫猫发布了新的文献求助10
8秒前
8秒前
heart发布了新的文献求助10
8秒前
8秒前
酷波er应助容若采纳,获得10
8秒前
serendipity发布了新的文献求助40
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612728
求助须知:如何正确求助?哪些是违规求助? 4697738
关于积分的说明 14895443
捐赠科研通 4734234
什么是DOI,文献DOI怎么找? 2546654
邀请新用户注册赠送积分活动 1510660
关于科研通互助平台的介绍 1473494