Machine Learning-Driven Inverse Design for Low-Carbon and Cost-Effective Organic Acid Leaching of Spent Ternary Lithium Batteries

作者
Caiping Ren,Le Lin,Qinpeng Liao,Hao Zhou,Chen Tian,Han Wang,Zhang Lin
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:59 (48): 25950-25959
标识
DOI:10.1021/acs.est.5c08681
摘要

Organic acid leaching is an effective and sustainable method for simultaneously recovering critical metals from ternary lithium batteries (T-LIBs). However, current methods overlook the structural impact of organic acids and rely on inefficient trial-and-error condition optimization. Herein, machine learning (ML) models are introduced to identify critical organic acid molecular descriptors and achieve inverse design of leaching systems through multialgorithm integration, simultaneously improving efficiency while reducing experimental costs and carbon emissions. Specifically, a comprehensive data set of 4,356 samples, incorporating acid structure fingerprints, metal properties, and operational conditions, was collected. Dimensionality reduction, fingerprint feature assessment, seed randomness, and data leakage management were conducted to enhance the robustness of the model. The optimized Extra Trees model achieved an RMSE of 13.49 and an R2 of 0.81 for leaching efficiency prediction, SHAP analysis quantitatively identified the dominant variables governing leaching efficiency and demonstrated their complex interrelationships. The inverse design conditions reduced cost and GHG emissions by 42-89% compared to reported experimental optimization based on the same set of samples, and achieved <10% relative error in experimental validation. This study conducts a systematic analysis of leaching influencing factors and offers a universally applicable protocol for chemistry-adaptive T-LIBs recycling process optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
曾经采蓝完成签到,获得积分10
刚刚
午盏发布了新的文献求助10
1秒前
斯文败类应助六六采纳,获得10
3秒前
斯文败类应助曾经采蓝采纳,获得10
4秒前
4秒前
ztc给ztc的求助进行了留言
5秒前
7秒前
8秒前
包容的小蚂蚁完成签到,获得积分10
9秒前
9秒前
11秒前
11秒前
ZDTT发布了新的文献求助10
12秒前
spc68应助爱吃鱼的猫采纳,获得10
12秒前
fqyd发布了新的文献求助10
13秒前
前交叉还在完成签到,获得积分10
13秒前
万能图书馆应助沈睿采纳,获得10
14秒前
14秒前
小马甲应助孤岛采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
16秒前
CGDAZE完成签到,获得积分10
17秒前
17秒前
HAL完成签到 ,获得积分10
19秒前
地狱跳跳虎完成签到,获得积分10
20秒前
23秒前
谨慎的自中完成签到,获得积分10
23秒前
从容的念柏完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
27秒前
27秒前
28秒前
Jasper应助小李子采纳,获得10
28秒前
啦啦啦发布了新的文献求助10
29秒前
Chimmy完成签到,获得积分10
30秒前
jiafang完成签到,获得积分10
31秒前
32秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5744595
求助须知:如何正确求助?哪些是违规求助? 5420782
关于积分的说明 15350455
捐赠科研通 4884794
什么是DOI,文献DOI怎么找? 2626158
邀请新用户注册赠送积分活动 1574922
关于科研通互助平台的介绍 1531745