Towards Precision Oncology: A New Predictive Machine Learning Model for Early Progression to Castration Resistant Prostate Cancer

作者
Miguel Ángel Gómez‐Luque,P. Rodríguez-Marcos,Rubén Campanario‐Pérez,A. Medina-González,Alejandro Cárdenas‐Fernández,Walter Orlandi‐Oliveira,Manuel Ruibal‐Moldes
出处
期刊:The Prostate [Wiley]
标识
DOI:10.1002/pros.70088
摘要

ABSTRACT Background and Objective Metastatic castration‐resistant prostate cancer (mCRPC) is an aggressive, lethal state of prostate cancer, for which early progression is an indicator of poor prognosis. The ability to predict this progression is of paramount clinical importance for guiding personalized treatment strategies. We aimed to develop and validate a novel machine learning (ML) model to predict early progression (≤ 12 months) to mCRPC and compare its performance against standard ML algorithms. Methods This was a retrospective analysis of 172 patients with mHSPC from the publicly available MSK‐IMPACT cohort. Inclusion criteria specified patients with mHSPC who had undergone genomic profiling and progressed to mCRPC during follow‐up. Patients with incomplete data were excluded. We collected 11 clinical, pathological, and genomic variables. The primary outcome was early progression (≤ 12 months) to mCRPC. Model performance was evaluated using a stratified fivefold cross‐validation, with AUC as the primary metric. Key Findings and Limitations A novel Rivality Index (RINH)‐based model, adapted from chemoinformatics, demonstrated significantly superior predictive performance (AUC: 0.86) compared to a panel of standard ML algorithms, none of which exceeded an AUC of 0.67. The model achieved an accuracy of 0.74, a sensitivity of 0.70, and a specificity of 0.77. Key limitations include the retrospective design and use of a single‐institution data set. Conclusions and Clinical Implications This novel RINH model offers a robust tool for risk stratification in mHSPC patients, capable of personalizing therapeutic strategies. However, external validation in multi‐center, prospective cohorts is an essential next step before its consideration as a clinical decision support tool.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祝垚发布了新的文献求助10
刚刚
烛夜黎发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
感性的初兰完成签到,获得积分10
1秒前
田国兵发布了新的文献求助10
3秒前
gaogao完成签到,获得积分10
3秒前
小蘑菇应助少管我采纳,获得10
4秒前
啵啵小甜狗完成签到,获得积分10
4秒前
lu完成签到 ,获得积分10
4秒前
滴滴完成签到 ,获得积分10
5秒前
ding应助沐沐采纳,获得10
5秒前
5秒前
Pawn发布了新的文献求助10
6秒前
7秒前
lucy_sar完成签到,获得积分10
8秒前
KerwinLLL发布了新的文献求助10
10秒前
10秒前
梦鱼完成签到,获得积分10
10秒前
智慧爷爷完成签到,获得积分10
12秒前
wxl发布了新的文献求助10
12秒前
Orange应助田国兵采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
Benzene完成签到,获得积分20
13秒前
77关闭了77文献求助
14秒前
欣喜的初柔完成签到 ,获得积分10
14秒前
少管我完成签到,获得积分20
14秒前
99完成签到,获得积分10
15秒前
天Q完成签到,获得积分10
15秒前
科研通AI6应助胡思乱想采纳,获得30
16秒前
浮游应助包容的灵采纳,获得10
16秒前
lpx43完成签到,获得积分10
17秒前
18秒前
学子发布了新的文献求助10
18秒前
汉堡包应助45度科研狗采纳,获得10
18秒前
lu完成签到,获得积分10
19秒前
李健的小迷弟应助YXT981221采纳,获得10
19秒前
19秒前
Pawn完成签到,获得积分10
20秒前
科研通AI2S应助科研通管家采纳,获得50
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5120742
求助须知:如何正确求助?哪些是违规求助? 4326041
关于积分的说明 13478459
捐赠科研通 4159774
什么是DOI,文献DOI怎么找? 2279698
邀请新用户注册赠送积分活动 1281431
关于科研通互助平台的介绍 1220304