Evidence-based managerial decision-making with machine learning: The case of Bayesian inference in aviation incidents

贝叶斯网络 航空 概率逻辑 计算机科学 船员 因果推理 驾驶舱 因果模型 航空安全 飞行模拟器 航空事故 贝叶斯概率 形势意识 风险分析(工程) 机器学习 运筹学 人工智能 工程类 航空学 模拟 计量经济学 医学 病理 经济 航空航天工程
作者
Burak Cankaya,Kazim Topuz,Dursun Delen,Aaron Glassman
出处
期刊:Omega [Elsevier]
卷期号:120: 102906-102906 被引量:21
标识
DOI:10.1016/j.omega.2023.102906
摘要

Understanding the factors behind aviation incidents is essential, not only because of the lethality of the accidents but also the incidents’ direct and indirect economic impact. Even minor incidents trigger significant economic damage and create disruptions to aviation operations. It is crucial to investigate these incidents to understand the underlying reasons and hence, reduce the risk associated with physical and financial safety in a precarious industry like aviation. The findings may provide decision-makers with a causally accurate means of investigating the topic while untangling the difficulties concerning the statistical associations and causal effects. This research aims to identify the significant variables and their probabilistic dependencies/relationships determining the degree of aircraft damage. The value and the contribution of this study include (1) developing a fully automatic ML prediction based DSS for aircraft damage severity, (2) conducting a deep network analysis of affinity between predicting variables using probabilistic graphical modeling (PGM), and (3) implementing a user-friendly dashboard to interpret the business insight coming from the design and development of the Bayesian Belief Network (BBN). By leveraging a large, real-world dataset, the proposed methodology captures the probability-based interrelations among air terminal, flight, flight crew, and air-vehicle-related characteristics as explanatory variables, thereby revealing the underlying, complex interactions in accident severity. This research contributes significantly to the current body of knowledge by defining and proving a methodology for automatically categorizing aircraft damage severity based on flight, aircraft, and PIC (pilot in command) information. Moreover, the study combines the findings of the Bayesian Belief Networks with decades of aviation expertise of the subject matter expert, drawing and explaining the association map to find the root causes of the problems and accident relayed variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助感动的绝音采纳,获得10
刚刚
刚刚
1秒前
YLL完成签到,获得积分10
1秒前
liwei发布了新的文献求助10
1秒前
落寞的小蚂蚁完成签到,获得积分10
1秒前
楠枫应助降临采纳,获得10
2秒前
2秒前
完美世界应助qhrjsxx采纳,获得10
3秒前
wanci应助DDDD采纳,获得10
3秒前
4秒前
5秒前
眼睛大的忆曼完成签到,获得积分10
5秒前
蓝天发布了新的文献求助10
5秒前
今后应助文献进入大脑采纳,获得10
5秒前
6秒前
不抽香烟发布了新的文献求助10
6秒前
扯淡发布了新的文献求助10
6秒前
sxw完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
liwei完成签到,获得积分10
8秒前
paulz完成签到,获得积分10
9秒前
yogurt完成签到,获得积分10
9秒前
9秒前
9秒前
杨梓杰完成签到,获得积分10
10秒前
10秒前
含蓄的荔枝完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
EZ完成签到 ,获得积分10
11秒前
11秒前
哈哈哈啊啊哈哈哈完成签到,获得积分10
12秒前
FuTing发布了新的文献求助10
12秒前
百里发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601299
求助须知:如何正确求助?哪些是违规求助? 4686815
关于积分的说明 14846229
捐赠科研通 4680459
什么是DOI,文献DOI怎么找? 2539291
邀请新用户注册赠送积分活动 1506167
关于科研通互助平台的介绍 1471283