Bilevel Fast Scene Adaptation for Low-Light Image Enhancement

计算机科学 人工智能 适应性 初始化 CRF公司 超参数 机器学习 适应(眼睛) 计算机视觉 模式识别(心理学) 生态学 生物 光学 物理 条件随机场 程序设计语言
作者
Long Ma,Dian Jin,Nan An,Jinyuan Liu,Xin Fan,Risheng Liu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2306.01343
摘要

Enhancing images in low-light scenes is a challenging but widely concerned task in the computer vision. The mainstream learning-based methods mainly acquire the enhanced model by learning the data distribution from the specific scenes, causing poor adaptability (even failure) when meeting real-world scenarios that have never been encountered before. The main obstacle lies in the modeling conundrum from distribution discrepancy across different scenes. To remedy this, we first explore relationships between diverse low-light scenes based on statistical analysis, i.e., the network parameters of the encoder trained in different data distributions are close. We introduce the bilevel paradigm to model the above latent correspondence from the perspective of hyperparameter optimization. A bilevel learning framework is constructed to endow the scene-irrelevant generality of the encoder towards diverse scenes (i.e., freezing the encoder in the adaptation and testing phases). Further, we define a reinforced bilevel learning framework to provide a meta-initialization for scene-specific decoder to further ameliorate visual quality. Moreover, to improve the practicability, we establish a Retinex-induced architecture with adaptive denoising and apply our built learning framework to acquire its parameters by using two training losses including supervised and unsupervised forms. Extensive experimental evaluations on multiple datasets verify our adaptability and competitive performance against existing state-of-the-art works. The code and datasets will be available at https://github.com/vis-opt-group/BL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助无私的小松鼠采纳,获得10
刚刚
我要发核心完成签到 ,获得积分10
刚刚
Ethereal完成签到,获得积分10
2秒前
行走发布了新的文献求助10
2秒前
3秒前
4秒前
6秒前
jerry完成签到,获得积分10
7秒前
jerry发布了新的文献求助10
10秒前
打打应助XieQinxie采纳,获得10
10秒前
hope发布了新的文献求助10
13秒前
1111完成签到 ,获得积分10
19秒前
共享精神应助Forizix采纳,获得10
22秒前
搜集达人应助开干采纳,获得10
24秒前
24秒前
张平一完成签到 ,获得积分10
26秒前
xfyxxh完成签到,获得积分10
27秒前
28秒前
zzrg完成签到,获得积分20
29秒前
29秒前
希望天下0贩的0应助ssss采纳,获得10
31秒前
英俊的铭应助莫比乌斯采纳,获得30
31秒前
35秒前
39秒前
阿米尔灿发布了新的文献求助10
40秒前
41秒前
柔弱熊猫发布了新的文献求助10
44秒前
45秒前
yukang发布了新的文献求助10
48秒前
和谐小南完成签到,获得积分10
49秒前
YAYA完成签到 ,获得积分10
52秒前
54秒前
55秒前
Lorain发布了新的文献求助10
57秒前
Akim应助科研通管家采纳,获得10
59秒前
科研通AI5应助科研通管家采纳,获得10
59秒前
59秒前
英姑应助科研通管家采纳,获得10
59秒前
asdfqwer应助科研通管家采纳,获得10
59秒前
szj完成签到,获得积分10
59秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800254
求助须知:如何正确求助?哪些是违规求助? 3345547
关于积分的说明 10325792
捐赠科研通 3061969
什么是DOI,文献DOI怎么找? 1680716
邀请新用户注册赠送积分活动 807201
科研通“疑难数据库(出版商)”最低求助积分说明 763557