PEAR: privacy-preserving and effective aggregation for byzantine-robust federated learning in real-world scenarios

计算机科学 联合学习 拜占庭式建筑 计算机安全 互联网隐私 人工智能 万维网 地理 考古
作者
Han Sun,Yan Zhang,Huiping Zhuang,Jiatong Li,Zhi Xu,Liji Wu
出处
期刊:The Computer Journal [Oxford University Press]
被引量:2
标识
DOI:10.1093/comjnl/bxae086
摘要

Abstract Federated learning (FL) enables collaborative training of global models among distributed clients without sharing local data. Secure aggregation, a new security primitive of FL, enhances the confidentiality of data and model parameters. Unfortunately, privacy-preserving (PP) FL is vulnerable to common poisoning attacks by Byzantine adversaries. Existing defense strategies mainly focus on identifying abnormal local gradients over plaintexts, which provides a weak privacy guarantee. In PPFL, adversaries can escape existing defenses by uploading encrypted poisonous gradients. In addition, most mainstream aggregation algorithms assume that clients’ local training data is uniformly distributed, Independent and Identically Distributed (IID), which is unrealistic for real-world FL scenarios where data are only stored on large-scale terminal devices. To address these issues, we propose PEAR, a PP aggregation strategy based on single key-dual server CKKS full homomorphic encryption in real-world distributed scenarios, which can resist encrypted poisoning attacks. Specifically, we use cosine similarity to measure the distance between encrypted gradients. Then, we propose a novel Byzantine-tolerance aggregation mechanism using cosine similarity, which includes trust score generation that can tolerate differentiated local gradients and a two-step weight generation method that considers both the degree of gradient deviation in direction and training data size. This mechanism can achieve robustness for both IID and non-IID data without compromising privacy. Our extensive evaluations for two typical poisoning attacks on different datasets show that PEAR is robust and effective in IID and non-IID data and outperforms existing mainstream Byzantine-robust algorithms, especially achieving 16.4% to 53.2% testing error rate reduction in non-IID settings with significant label distribution and quantity skew while maintaining the same efficiency as FedAvg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洪瑞发布了新的文献求助30
1秒前
2秒前
111完成签到,获得积分10
2秒前
4秒前
张多发布了新的文献求助10
5秒前
Lucas应助李杰采纳,获得10
8秒前
顾矜应助zzz采纳,获得10
8秒前
小美发布了新的文献求助10
8秒前
早早完成签到,获得积分10
9秒前
10秒前
长乐完成签到,获得积分10
10秒前
10秒前
雁菡清清完成签到 ,获得积分10
12秒前
Atom完成签到,获得积分10
13秒前
无糖零脂发布了新的文献求助10
16秒前
小蘑菇应助雯雯采纳,获得10
17秒前
张多完成签到,获得积分20
17秒前
19秒前
19秒前
伊可完成签到 ,获得积分10
20秒前
莲枳榴莲完成签到,获得积分10
20秒前
ding应助天真大神采纳,获得10
20秒前
Gauss应助洪瑞采纳,获得30
22秒前
23秒前
23秒前
高大鸭子完成签到 ,获得积分10
24秒前
25秒前
zzz发布了新的文献求助10
26秒前
小龙虾爱睡觉完成签到 ,获得积分10
26秒前
活力的糜完成签到,获得积分10
28秒前
朵拉A梦发布了新的文献求助10
28秒前
睡到自然醒完成签到 ,获得积分10
31秒前
RATHER完成签到,获得积分10
32秒前
风中的文龙完成签到,获得积分10
34秒前
35秒前
郭囯完成签到,获得积分10
36秒前
37秒前
研友_VZG7GZ应助陈修高采纳,获得10
37秒前
丘比特应助alpha采纳,获得10
38秒前
老北京发布了新的文献求助10
38秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Theories of Human Development 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3917337
求助须知:如何正确求助?哪些是违规求助? 3462862
关于积分的说明 10925921
捐赠科研通 3190512
什么是DOI,文献DOI怎么找? 1763419
邀请新用户注册赠送积分活动 853577
科研通“疑难数据库(出版商)”最低求助积分说明 793945