Accuracy of artificial intelligence algorithms in predicting acute respiratory distress syndrome: a systematic review and meta-analysis

健康信息学 荟萃分析 计算机科学 人工智能 算法 医学 机器学习 公共卫生 内科学 病理
作者
Yaxin Xiong,Yuan Gao,Yucheng Qi,Y. Zhi,Jia Xu,Kuo Wang,Qiuyue Yang,Changsong Wang,Mingyan Zhao,Xianglin Meng
出处
期刊:BMC Medical Informatics and Decision Making [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12911-025-02869-0
摘要

Acute respiratory distress syndrome (ARDS) is a serious threat to human life. Hence, early and accurate diagnosis and treatment are crucial for patient survival. This meta-analysis evaluates the accuracy of artificial intelligence in the early diagnosis of ARDS and provides guidance for future research and applications. A search on PubMed, Embase, Cochrane, Web of Science, CNKI, Wanfang, Chinese Biomedical Literature (CBM), and VIP databases was systematically conducted, from their establishment to November 2023, to obtain eligible studies for the analysis and evaluation of the predictive effect of AI on ARDS. The retrieved literature was screened according to inclusion and exclusion criteria, the quality of the included studies was assessed using QUADAS-2, and the included studies were statistically analyzed. Among the 2, 996 studies, 33 were included in this meta-analysis, which showed that the pooled sensitivity of AI in predicting ARDS was 0.81 (0.76-0.85), the pooled specificity was 0.88 (0.84-0.91), and the area under the receiver operating characteristic curve (AUC) was 0.91 (0.88-0.93). The analyzed studies included 28 models, with a pooled sensitivity of 0.79 (0.76-0.82), a pooled specificity of 0.85 (0.83-0.88), and an AUC of 0.89 (0.86-0.91). In the subgroup analysis, the pooled AUC of the AI models ANN, CNN, LR, RF, SVM, and XGB were 0.86 (0.83-0.89), 0.91 (0.88-0.93), 0.86 (0.83-0.89), and 0.89 (0.86-0.91), 0.90 (0.87-0.92), 0.93 (0.90-0.95), respectively. In an additional subgroup analysis, we evaluated the predictive performance of the AI models trained using different predictors. This meta-analysis was registered in PROSPERO (CRD42023491546). AI has good sensitivity and specificity for predicting ARDS, indicating a high clinical application value. Algorithmic models such as CNN, SVM, and XGB have improved prediction performance. The subgroup analysis revealed that the model trained using images combined with other predictors had the best predictive performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maguodrgon完成签到,获得积分10
2秒前
Lotus完成签到,获得积分10
5秒前
矢思然发布了新的文献求助10
7秒前
Yanzhi完成签到,获得积分10
8秒前
deniroming完成签到,获得积分10
9秒前
楚寅完成签到 ,获得积分10
10秒前
ioio完成签到 ,获得积分10
11秒前
无限晓蓝完成签到 ,获得积分10
11秒前
积极的尔白完成签到 ,获得积分10
12秒前
杨洋完成签到 ,获得积分10
14秒前
仕子佳人完成签到,获得积分10
14秒前
15秒前
科研通AI6应助dearwang采纳,获得10
19秒前
舒适涵山完成签到,获得积分10
19秒前
小唐尼发布了新的文献求助30
20秒前
沉静凡松完成签到 ,获得积分20
26秒前
小唐尼完成签到,获得积分10
26秒前
微笑芒果完成签到 ,获得积分0
29秒前
33秒前
拼搏的亦玉完成签到,获得积分10
33秒前
吃瓜米吃瓜米完成签到 ,获得积分10
38秒前
40秒前
感动清炎完成签到,获得积分10
42秒前
102发布了新的文献求助10
45秒前
dearwang完成签到,获得积分10
52秒前
隐形曼青应助ccmxigua采纳,获得10
53秒前
Roy完成签到,获得积分10
54秒前
was_3完成签到,获得积分0
55秒前
苹果丹烟完成签到 ,获得积分10
55秒前
尊敬的扬完成签到 ,获得积分10
58秒前
路帅发布了新的文献求助10
58秒前
有魅力的白玉完成签到 ,获得积分10
59秒前
11完成签到 ,获得积分10
1分钟前
可爱的函函应助宋丹丹采纳,获得10
1分钟前
怡心亭完成签到 ,获得积分10
1分钟前
YSY完成签到 ,获得积分0
1分钟前
CodeCraft应助ccmxigua采纳,获得10
1分钟前
奋斗诗云完成签到 ,获得积分10
1分钟前
闻巷雨完成签到 ,获得积分10
1分钟前
cgliuhx完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5315200
求助须知:如何正确求助?哪些是违规求助? 4457851
关于积分的说明 13868384
捐赠科研通 4347405
什么是DOI,文献DOI怎么找? 2387759
邀请新用户注册赠送积分活动 1381862
关于科研通互助平台的介绍 1351115