已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Accuracy of artificial intelligence algorithms in predicting acute respiratory distress syndrome: a systematic review and meta-analysis

健康信息学 荟萃分析 计算机科学 人工智能 算法 医学 机器学习 公共卫生 内科学 病理
作者
Yaxin Xiong,Yuan Gao,Yucheng Qi,Y. Zhi,Jia Xu,Kuo Wang,Qiuyue Yang,Changsong Wang,Mingyan Zhao,Xianglin Meng
出处
期刊:BMC Medical Informatics and Decision Making [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12911-025-02869-0
摘要

Acute respiratory distress syndrome (ARDS) is a serious threat to human life. Hence, early and accurate diagnosis and treatment are crucial for patient survival. This meta-analysis evaluates the accuracy of artificial intelligence in the early diagnosis of ARDS and provides guidance for future research and applications. A search on PubMed, Embase, Cochrane, Web of Science, CNKI, Wanfang, Chinese Biomedical Literature (CBM), and VIP databases was systematically conducted, from their establishment to November 2023, to obtain eligible studies for the analysis and evaluation of the predictive effect of AI on ARDS. The retrieved literature was screened according to inclusion and exclusion criteria, the quality of the included studies was assessed using QUADAS-2, and the included studies were statistically analyzed. Among the 2, 996 studies, 33 were included in this meta-analysis, which showed that the pooled sensitivity of AI in predicting ARDS was 0.81 (0.76-0.85), the pooled specificity was 0.88 (0.84-0.91), and the area under the receiver operating characteristic curve (AUC) was 0.91 (0.88-0.93). The analyzed studies included 28 models, with a pooled sensitivity of 0.79 (0.76-0.82), a pooled specificity of 0.85 (0.83-0.88), and an AUC of 0.89 (0.86-0.91). In the subgroup analysis, the pooled AUC of the AI models ANN, CNN, LR, RF, SVM, and XGB were 0.86 (0.83-0.89), 0.91 (0.88-0.93), 0.86 (0.83-0.89), and 0.89 (0.86-0.91), 0.90 (0.87-0.92), 0.93 (0.90-0.95), respectively. In an additional subgroup analysis, we evaluated the predictive performance of the AI models trained using different predictors. This meta-analysis was registered in PROSPERO (CRD42023491546). AI has good sensitivity and specificity for predicting ARDS, indicating a high clinical application value. Algorithmic models such as CNN, SVM, and XGB have improved prediction performance. The subgroup analysis revealed that the model trained using images combined with other predictors had the best predictive performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Haisenky采纳,获得10
4秒前
限量款小辰完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
上官若男应助大力的图图采纳,获得10
8秒前
9秒前
Haisenky完成签到,获得积分20
10秒前
HEIKU应助科研通管家采纳,获得10
14秒前
小彭友应助科研通管家采纳,获得10
14秒前
Hang应助科研通管家采纳,获得10
14秒前
HEIKU应助科研通管家采纳,获得10
14秒前
14秒前
旧时往影发布了新的文献求助10
15秒前
yangjinru完成签到 ,获得积分10
17秒前
20秒前
Lucas应助zxy采纳,获得10
22秒前
24秒前
逆天大脚完成签到,获得积分10
24秒前
陈陈完成签到 ,获得积分10
24秒前
都市隶人发布了新的文献求助10
24秒前
26秒前
FashionBoy应助乐乐茶采纳,获得30
28秒前
大好河山发布了新的文献求助10
29秒前
31秒前
32秒前
一二一发布了新的文献求助10
32秒前
33秒前
zxy发布了新的文献求助10
35秒前
Owen应助大好河山采纳,获得30
37秒前
都市隶人完成签到,获得积分10
38秒前
贼吖完成签到 ,获得积分20
38秒前
叻居居发布了新的文献求助30
38秒前
39秒前
40秒前
牛八先生完成签到,获得积分10
43秒前
量子星尘发布了新的文献求助10
44秒前
45秒前
45秒前
干脆苹果发布了新的文献求助10
48秒前
yaozheng2发布了新的文献求助10
48秒前
冷风完成签到 ,获得积分10
52秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3889224
求助须知:如何正确求助?哪些是违规求助? 3431468
关于积分的说明 10773892
捐赠科研通 3156457
什么是DOI,文献DOI怎么找? 1743120
邀请新用户注册赠送积分活动 841514
科研通“疑难数据库(出版商)”最低求助积分说明 785966