概化理论
编码(社会科学)
肺癌
癌症
计算机科学
液体活检
阶段(地层学)
假警报
人工智能
医学
计算生物学
机器学习
生物信息学
肿瘤科
内科学
生物
统计
数学
古生物学
作者
Mehran Karimzadeh,Amir Momen-Roknabadi,Taylor B. Cavazos,Yuqi Fang,Nae-Chyun Chen,Michael Multhaup,Jennifer Yen,Jeremy Ku,Jieyang Wang,Xuan Zhao,Philip Murzynowski,Kathleen Wang,Rose Hanna,Alice Huang,Diana Corti,Dang Le Tri Nguyen,Ti Lam,Seda Kilinc,Patrick Arensdorf,Kimberly H. Chau
标识
DOI:10.1038/s41467-024-53851-9
摘要
Abstract Liquid biopsies have the potential to revolutionize cancer care through non-invasive early detection of tumors. Developing a robust liquid biopsy test requires collecting high-dimensional data from a large number of blood samples across heterogeneous groups of patients. We propose that the generative capability of variational auto-encoders enables learning a robust and generalizable signature of blood-based biomarkers. In this study, we analyze orphan non-coding RNAs (oncRNAs) from serum samples of 1050 individuals diagnosed with non-small cell lung cancer (NSCLC) at various stages, as well as sex-, age-, and BMI-matched controls. We demonstrate that our multi-task generative AI model, Orion, surpasses commonly used methods in both overall performance and generalizability to held-out datasets. Orion achieves an overall sensitivity of 94% (95% CI: 87%–98%) at 87% (95% CI: 81%–93%) specificity for cancer detection across all stages, outperforming the sensitivity of other methods on held-out validation datasets by more than ~ 30%.
科研通智能强力驱动
Strongly Powered by AbleSci AI