材料科学
超级电容器
电解质
离子液体
聚苯乙烯
共聚物
离子电导率
化学工程
准固态
环氧乙烷
功率密度
碳纳米管
膜
高分子化学
纳米技术
电极
聚合物
电化学
复合材料
有机化学
物理化学
化学
功率(物理)
热力学
催化作用
物理
生物化学
色素敏化染料
工程类
作者
Anto Puthussery Varghese,Daniela de Morais Zanata,Sima Lashkari,Miryam Criado González,Maria Forsyth,Patrick C. Howlett,Andrew N. Rider,Nicolas Goujon,Irune Villaluenga
标识
DOI:10.1002/batt.202400591
摘要
Abstract We report on the physiochemical behaviour of membranes based on three different polystyrene‐ b ‐poly(ethylene oxide)‐ b ‐polystyrene (PS‐ b ‐PEO‐ b ‐PS) block copolymers and an ionic liquid (1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIMTFSI)) and their use as solid‐state electrolytes in supercapacitors. The nanostructured block copolymers form free standing membranes at high ionic liquid uptake with conductivities above 1 mS/cm at 25 °C, keeping ordered morphologies. We used small angle X‐ray scattering (SAXS) to propose the correlation between domain spacing, the copolymer chain length ( N ) and the interaction parameter (χ eff) in the block copolymers. We explored the potential of the electrolytes in two high voltage (3.0 V) device configurations, first using carbon nanotube (CNT) electrodes, with excellent electrical conductivity and high‐rate capability exhibiting a power density of 5.7 KW/kg at 4 A/g, while devices based on high surface area activated carbon exhibited high energy density of 20.7 Wh/kg at 4 A/g. Overall, both devices deliver superior specific energy and power densities than that of commercial state‐of‐the‐art supercapacitors, based on liquid electrolyte. Additionally, the CNT|Solid‐state|CNT device displays higher power density compared to the AC|Solid‐state|AC device, highlighting its better suitability for high power applications, while the AC|Solid‐state|AC device, is better suited for energy density applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI