Multi-scale contextual semantic enhancement network for 3D medical image segmentation

计算机科学 分割 棱锥(几何) 背景(考古学) 人工智能 特征(语言学) 加权 比例(比率) 模式识别(心理学) 卷积神经网络 图像分割 数学 放射科 哲学 几何学 古生物学 物理 生物 医学 量子力学 语言学
作者
Tingjian Xia,Guoheng Huang,Chi‐Man Pun,Wei Zhang,Jiajian Li,Bingo Wing‐Kuen Ling,Lin Chao,Qi Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (22): 225014-225014
标识
DOI:10.1088/1361-6560/ac9e41
摘要

Abstract Objective . Accurate and automatic segmentation of medical images is crucial for improving the efficiency of disease diagnosis and making treatment plans. Although methods based on convolutional neural networks have achieved excellent results in numerous segmentation tasks of medical images, they still suffer from challenges including drastic scale variations of lesions, blurred boundaries of lesions and class imbalance. Our objective is to design a segmentation framework named multi-scale contextual semantic enhancement network (3D MCSE-Net) to address the above problems. Approach . The 3D MCSE-Net mainly consists of a multi-scale context pyramid fusion module (MCPFM), a triple feature adaptive enhancement module (TFAEM), and an asymmetric class correction loss (ACCL) function. Specifically, the MCPFM resolves the problem of unreliable predictions due to variable morphology and drastic scale variations of lesions by capturing the multi-scale global context of feature maps. Subsequently, the TFAEM overcomes the problem of blurred boundaries of lesions caused by the infiltrating growth and complex context of lesions by adaptively recalibrating and enhancing the multi-dimensional feature representation of suspicious regions. Moreover, the ACCL alleviates class imbalances by adjusting asy mmetric correction coefficient and weighting factor. Main results . Our method is evaluated on the nasopharyngeal cancer tumor segmentation (NPCTS) dataset, the public dataset of the MICCAI 2017 liver tumor segmentation (LiTS) challenge and the 3D image reconstruction for comparison of algorithm and DataBase (3Dircadb) dataset to verify its effectiveness and generalizability. The experimental results show the proposed components all have unique strengths and exhibit mutually reinforcing properties. More importantly, the proposed 3D MCSE-Net outperforms previous state-of-the-art methods for tumor segmentation on the NPCTS, LiTS and 3Dircadb dataset. Significance . Our method addresses the effects of drastic scale variations of lesions, blurred boundaries of lesions and class imbalance, and improves tumors segmentation accuracy, which facilitates clinical medical diagnosis and treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
清爽的山雁关注了科研通微信公众号
刚刚
1秒前
小阎发布了新的文献求助10
2秒前
PEIQ完成签到,获得积分20
3秒前
JerryZ发布了新的文献求助10
3秒前
111完成签到,获得积分10
4秒前
5秒前
5秒前
机智迎天发布了新的文献求助10
5秒前
6秒前
7秒前
科研通AI2S应助瑞曦采纳,获得10
10秒前
10秒前
chenjiaye发布了新的文献求助10
10秒前
11秒前
感动问枫发布了新的文献求助10
11秒前
小张医生发布了新的文献求助30
12秒前
12秒前
Evooolet发布了新的文献求助10
15秒前
16秒前
努力看文献的小杨完成签到,获得积分10
16秒前
wink16完成签到,获得积分10
16秒前
余甘木发布了新的文献求助30
17秒前
17秒前
Ava应助感动问枫采纳,获得10
18秒前
19秒前
feliciaaa完成签到,获得积分10
19秒前
科研通AI5应助fmx采纳,获得10
20秒前
20秒前
默默安双完成签到 ,获得积分10
21秒前
sbbb完成签到,获得积分20
23秒前
23秒前
ning完成签到,获得积分10
24秒前
beizi发布了新的文献求助10
24秒前
24秒前
Nuyoah完成签到 ,获得积分10
25秒前
23号有雨发布了新的文献求助10
26秒前
大块完成签到 ,获得积分10
26秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846356
求助须知:如何正确求助?哪些是违规求助? 3388854
关于积分的说明 10554489
捐赠科研通 3109256
什么是DOI,文献DOI怎么找? 1713555
邀请新用户注册赠送积分活动 824800
科研通“疑难数据库(出版商)”最低求助积分说明 775068