Predicting recurrence risks in lung cancer patients using multimodal radiomics and random survival forests

医学 一致性 队列 阶段(地层学) 放射科 肺癌 癌症 肿瘤科 列线图 内科学 古生物学 生物
作者
Jaryd R. Christie,Omar Daher,Mohamed Abdelrazek,Perrin E. Romine,Richard Malthaner,Mehdi Qiabi,Rahul Nayak,Sandy Napel,Viswam S. Nair,Sarah A. Mattonen
出处
期刊:Journal of medical imaging [SPIE]
卷期号:9 (06) 被引量:9
标识
DOI:10.1117/1.jmi.9.6.066001
摘要

We developed a model integrating multimodal quantitative imaging features from tumor and nontumor regions, qualitative features, and clinical data to improve the risk stratification of patients with resectable non-small cell lung cancer (NSCLC).We retrospectively analyzed 135 patients [mean age, 69 years (43 to 87, range); 100 male patients and 35 female patients] with NSCLC who underwent upfront surgical resection between 2008 and 2012. The tumor and peritumoral regions on both preoperative CT and FDG PET-CT and the vertebral bodies L3 to L5 on FDG PET were segmented to assess the tumor and bone marrow uptake, respectively. Radiomic features were extracted and combined with clinical and CT qualitative features. A random survival forest model was developed using the top-performing features to predict the time to recurrence/progression in the training cohort ( n=101 ), validated in the testing cohort ( n=34 ) using the concordance, and compared with a stage-only model. Patients were stratified into high- and low-risks of recurrence/progression using Kaplan-Meier analysis.The model, consisting of stage, three wavelet texture features, and three wavelet first-order features, achieved a concordance of 0.78 and 0.76 in the training and testing cohorts, respectively, significantly outperforming the baseline stage-only model results of 0.67 ( p<0.005 ) and 0.60 ( p=0.008 ), respectively. Patients at high- and low-risks of recurrence/progression were significantly stratified in both the training ( p<0.005 ) and the testing ( p=0.03 ) cohorts.Our radiomic model, consisting of stage and tumor, peritumoral, and bone marrow features from CT and FDG PET-CT significantly stratified patients into low- and high-risk of recurrence/progression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
困敦发布了新的文献求助30
1秒前
甜甜圈发布了新的文献求助10
1秒前
研友_VZG7GZ应助科研小趴菜采纳,获得10
1秒前
1秒前
李兴起发布了新的文献求助10
1秒前
3秒前
夏来应助小郭采纳,获得10
3秒前
瘠薄完成签到,获得积分10
3秒前
桓某人发布了新的文献求助10
3秒前
4秒前
aaaaaa发布了新的文献求助10
5秒前
yrw完成签到,获得积分10
5秒前
归海若完成签到,获得积分10
6秒前
6秒前
tingting完成签到 ,获得积分10
6秒前
7秒前
凉了的饭菜完成签到,获得积分10
7秒前
yourself发布了新的文献求助10
7秒前
jarenthar完成签到 ,获得积分10
7秒前
Hello应助星河在眼里采纳,获得10
7秒前
8秒前
8秒前
可爱的函函应助aaaaaa采纳,获得10
9秒前
暖冬的向日葵完成签到,获得积分10
10秒前
希尔发布了新的文献求助10
11秒前
11秒前
wanci应助飞飞飞采纳,获得10
11秒前
yiding完成签到 ,获得积分10
11秒前
11秒前
17完成签到,获得积分10
12秒前
虚幻靖易完成签到,获得积分10
12秒前
12秒前
12秒前
MY2720完成签到,获得积分10
12秒前
666plus完成签到,获得积分10
13秒前
13秒前
坚定的琦完成签到 ,获得积分10
13秒前
孤独士晋发布了新的文献求助10
13秒前
爆米花发布了新的文献求助10
13秒前
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834587
求助须知:如何正确求助?哪些是违规求助? 3377081
关于积分的说明 10496404
捐赠科研通 3096557
什么是DOI,文献DOI怎么找? 1705041
邀请新用户注册赠送积分活动 820414
科研通“疑难数据库(出版商)”最低求助积分说明 772031