过度拟合
解析
范畴变量
重性抑郁障碍
多元统计
萧条(经济学)
心理学
样品(材料)
倾向得分匹配
临床心理学
自然语言处理
人工智能
心情
计算机科学
统计
机器学习
数学
化学
色谱法
人工神经网络
经济
宏观经济学
作者
Katharine Dunlop,Logan Grosenick,Jonathan Downar,Fidel Vila‐Rodriguez,Faith M. Gunning,Zafiris J. Daskalakis,Daniel M. Blumberger,Conor Liston
标识
DOI:10.1016/j.biopsych.2024.01.012
摘要
Recent studies have reported significant advances in modeling the biological basis of heterogeneity in major depressive disorder, but investigators have also identified important technical challenges, including scanner-related artifacts, a propensity for multivariate models to overfit, and a need for larger samples with more extensive clinical phenotyping. The goals of the current study were to evaluate dimensional and categorical solutions to parsing heterogeneity in depression that are stable and generalizable in a large, single-site sample.
科研通智能强力驱动
Strongly Powered by AbleSci AI