亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Utilizing Machine Learning Models with Molecular Fingerprints and Chemical Structures to Predict the Sulfate Radical Rate Constants of Water Contaminants

支持向量机 随机森林 人工智能 决策树 机器学习 分子描述符 梯度升压 激进的 试验装置 数量结构-活动关系 污染物 Boosting(机器学习) 化学 计算机科学 预测建模 有机化学
作者
Ting Tang,Dehao Song,Jinfan Chen,Zhenguo Chen,Yufan Du,Zhi Dang,Guining Lu
出处
期刊:Processes [Multidisciplinary Digital Publishing Institute]
卷期号:12 (2): 384-384
标识
DOI:10.3390/pr12020384
摘要

Sulfate radicals are increasingly recognized for their potent oxidative capabilities, making them highly effective in degrading persistent organic pollutants (POPs) in aqueous environments. These radicals excel in breaking down complex organic molecules that are resistant to traditional treatment methods, addressing the challenges posed by POPs known for their persistence, bioaccumulation, and potential health impacts. The complexity of predicting interactions between sulfate radicals and diverse organic contaminants is a notable challenge in advancing water treatment technologies. This study bridges this gap by employing a range of machine learning (ML) models, including random forest (DF), decision tree (DT), support vector machine (SVM), XGBoost (XGB), gradient boosting (GB), and Bayesian ridge regression (BR) models. Predicting performances were evaluated using R2, RMSE, and MAE, with the residual plots presented. Performances varied in their ability to manage complex relationships and large datasets. The SVM model demonstrated the best predictive performance when utilizing the Morgan fingerprint as descriptors, achieving the highest R2 and the lowest MAE value in the test set. The GB model displayed optimal performance when chemical descriptors were utilized as features. Boosting models generally exhibited superior performances when compared to single models. The most important ten features were presented via SHAP analysis. By analyzing the performance of these models, this research not only enhances our understanding of chemical reactions involving sulfate radicals, but also showcases the potential of machine learning in environmental chemistry, combining the strengths of ML with chemical kinetics in order to address the challenges of water treatment and contaminant analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yinlao完成签到,获得积分10
34秒前
天天快乐应助阿巴阿巴采纳,获得10
44秒前
夏天完成签到,获得积分10
45秒前
舒心谷雪完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助隐形的绮山采纳,获得10
1分钟前
1分钟前
皮皮虾发布了新的文献求助10
1分钟前
生姜批发刘哥完成签到 ,获得积分10
1分钟前
1分钟前
大可发布了新的文献求助10
1分钟前
1分钟前
nnnn发布了新的文献求助10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
cyanpomelo应助科研通管家采纳,获得10
1分钟前
情怀应助nnnn采纳,获得10
1分钟前
王王完成签到 ,获得积分10
1分钟前
喜悦的小土豆完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
彩色幼南发布了新的文献求助10
2分钟前
笨笨芯发布了新的文献求助10
2分钟前
阿巴阿巴发布了新的文献求助10
2分钟前
彩色幼南完成签到,获得积分20
2分钟前
李健的小迷弟应助笨笨芯采纳,获得10
2分钟前
大可完成签到,获得积分10
2分钟前
笨笨芯完成签到,获得积分10
2分钟前
斯寜完成签到,获得积分0
2分钟前
Artin完成签到,获得积分10
2分钟前
隐形曼青应助L2采纳,获得10
2分钟前
orixero应助Cecilia采纳,获得10
2分钟前
3分钟前
嘉心糖完成签到,获得积分0
3分钟前
3分钟前
Cecilia发布了新的文献求助10
3分钟前
L2发布了新的文献求助10
3分钟前
Akim应助L2采纳,获得10
3分钟前
agf完成签到 ,获得积分10
3分钟前
yang完成签到,获得积分20
3分钟前
吃了吃了完成签到,获得积分10
3分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827212
求助须知:如何正确求助?哪些是违规求助? 3369573
关于积分的说明 10456454
捐赠科研通 3089256
什么是DOI,文献DOI怎么找? 1699738
邀请新用户注册赠送积分活动 817497
科研通“疑难数据库(出版商)”最低求助积分说明 770251