De Novo Generation and Identification of Novel Compounds with Drug Efficacy Based on Machine Learning

药品 鉴定(生物学) 计算机科学 计算生物学 纳米技术 药理学 医学 材料科学 生物 植物
作者
Dakuo He,Qing Liu,Yan Mi,Qingqi Meng,Libin Xu,Chunyu Hou,Jinpeng Wang,Ning Li,Yang Liu,Huifang Chai,Yanqiu Yang,Jingyu Liu,Lihui Wang,Yue Hou
出处
期刊:Advanced Science [Wiley]
卷期号:11 (11) 被引量:5
标识
DOI:10.1002/advs.202307245
摘要

One of the main challenges in small molecule drug discovery is finding novel chemical compounds with desirable activity. Traditional drug development typically begins with target selection, but the correlation between targets and disease remains to be further investigated, and drugs designed based on targets may not always have the desired drug efficacy. The emergence of machine learning provides a powerful tool to overcome the challenge. Herein, a machine learning-based strategy is developed for de novo generation of novel compounds with drug efficacy termed DTLS (Deep Transfer Learning-based Strategy) by using dataset of disease-direct-related activity as input. DTLS is applied in two kinds of disease: colorectal cancer (CRC) and Alzheimer's disease (AD). In each case, novel compound is discovered and identified in in vitro and in vivo disease models. Their mechanism of actionis further explored. The experimental results reveal that DTLS can not only realize the generation and identification of novel compounds with drug efficacy but also has the advantage of identifying compounds by focusing on protein targets to facilitate the mechanism study. This work highlights the significant impact of machine learning on the design of novel compounds with drug efficacy, which provides a powerful new approach to drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
water完成签到,获得积分10
1秒前
张海林完成签到,获得积分10
1秒前
独特的春发布了新的文献求助10
1秒前
sdl发布了新的文献求助10
3秒前
Guai完成签到,获得积分10
6秒前
7秒前
8秒前
月亮发布了新的文献求助10
10秒前
张海林发布了新的文献求助20
10秒前
11秒前
12秒前
YQS发布了新的文献求助10
12秒前
单薄的亦瑶完成签到 ,获得积分10
12秒前
spring发布了新的文献求助10
13秒前
kxm发布了新的文献求助10
13秒前
今后应助负责的方盒采纳,获得10
13秒前
董小妍完成签到 ,获得积分10
14秒前
自由的雨南完成签到 ,获得积分10
15秒前
X_嗯发布了新的文献求助10
15秒前
机智马里奥完成签到 ,获得积分10
19秒前
欢歌笑语完成签到,获得积分10
19秒前
在水一方应助wcuzhl采纳,获得10
20秒前
司马三问发布了新的文献求助10
20秒前
愤怒的小马完成签到,获得积分10
21秒前
24秒前
kumo完成签到,获得积分10
25秒前
zmd关注了科研通微信公众号
25秒前
28秒前
小西贝完成签到 ,获得积分10
28秒前
joey发布了新的文献求助10
28秒前
狂野世立发布了新的文献求助10
28秒前
芥楠完成签到,获得积分10
29秒前
YQS完成签到,获得积分10
31秒前
31秒前
32秒前
迷人紫山完成签到,获得积分10
34秒前
绝望了发布了新的文献求助20
35秒前
slj发布了新的文献求助10
35秒前
35秒前
完美世界应助X_嗯采纳,获得10
36秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831507
求助须知:如何正确求助?哪些是违规求助? 3373721
关于积分的说明 10481076
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702910
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771307