Transfer learning enables prediction of steel corrosion in concrete under natural environments

腐蚀 胶凝的 学习迁移 可预测性 混凝土保护层 水泥 氯化物 环境科学 灰浆 材料科学 计算机科学 人工智能 冶金 复合材料 数学 统计
作者
Haodong Ji,Ye Tian,Chuanqing Fu,Hailong Ye
出处
期刊:Cement & Concrete Composites [Elsevier]
卷期号:148: 105488-105488 被引量:37
标识
DOI:10.1016/j.cemconcomp.2024.105488
摘要

Existing machine learning (ML) models for corrosion rate prediction of steel in cementitious materials are typically established based on laboratory datasets obtained under controlled material and environmental conditions, which questions their applicability to more realistic and complex scenarios. Transfer learning (TL), as a branch of ML, can extract knowledge from a source domain, which can be utilized to improve prediction accuracy on a target domain. In this work, a TL paradigm, grounded on an advanced ML model built for steel corrosion in mortars, is proposed to elevate the efficacy of existing ML models in forecasting corrosion rate of steel in concrete under natural environments. The results underscore the prominence of certain features, specifically electrical resistivity, chloride-to-hydroxide concentration ratio ([Cl−]/[OH−]), cement proportion, corrosion potential, porosity, and water content. In addition, the interplay of diverse quantities of features and feature amalgamations exercises a substantial influence on the performance of ML models. It is found that TL strategy enhances the ML model's predictability for corrosion rate in concrete under natural environments. The knowledge pertaining to steel corrosion under controlled laboratory conditions can be transferred to enhance the model's ability to predict steel corrosion in concrete under natural conditions. These results underscore TL's potential in enabling reliable corrosion rate predictions in existing in-service concrete structures, especially with limited data and deficient information for steel corrosion in concrete structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
老艺人完成签到,获得积分10
2秒前
nnmmuu完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
时生发布了新的文献求助10
8秒前
登登完成签到,获得积分10
8秒前
是达达哦完成签到,获得积分10
8秒前
Youzi完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
打打应助VESong采纳,获得10
11秒前
12秒前
幸福妙柏发布了新的文献求助10
12秒前
xiying完成签到 ,获得积分10
13秒前
科研通AI6.1应助茉莉花采纳,获得10
15秒前
cy发布了新的文献求助20
16秒前
qweqwe完成签到,获得积分10
16秒前
18秒前
wanci应助123采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
lyx完成签到,获得积分10
19秒前
小二郎应助东东采纳,获得10
20秒前
清秀的怀蕊完成签到 ,获得积分0
21秒前
RE发布了新的文献求助10
21秒前
21秒前
21秒前
杏杏发布了新的文献求助10
22秒前
22秒前
时生完成签到,获得积分10
23秒前
科研通AI6.1应助Cathy_Durham采纳,获得50
23秒前
君然发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785553
求助须知:如何正确求助?哪些是违规求助? 5688705
关于积分的说明 15467891
捐赠科研通 4914643
什么是DOI,文献DOI怎么找? 2645317
邀请新用户注册赠送积分活动 1593098
关于科研通互助平台的介绍 1547432