Thermal Bridging Effect Enhancing Heat Transport Across Graphene Interfaces with Pinhole Defects

石墨烯 材料科学 热导率 热传导 声子 分子动力学 基质(水族馆) 纳米技术 热的 针孔(光学) 化学物理 石墨烯纳米带 联轴节(管道) 凝聚态物理 复合材料 光学 热力学 化学 计算化学 物理 海洋学 地质学
作者
Weidong Zheng,Yinong Liu,Chunwei Zhang,Hongkun Li,Cheng Shao
标识
DOI:10.2139/ssrn.4697011
摘要

Interfacial thermal conductance (G) is of critical significance to the efficient thermal management of two-dimensional (2D) material devices. Despite the importance of defects engineering in tuning G, the mechanisms of thermal transport across defective graphene interfaces remain unclear. In this study, we have identified and demonstrated the origins of the enhanced heat transport across pinhole defective graphene through our ultrafast pump-probe measurements and molecular dynamics (MD) simulations. In prior work, the enhanced G across defective graphene interfaces was commonly attributed to the improved overlap of phonon density of states (DOS) or interfacial coupling strength. We, however, observe a remarkable 2.5-fold increase in heat conduction and a distinctly different temperature dependence of G for defective graphene with the same superstrate and substrate material, compared to pristine graphene. In contrast, interfaces with different superstrate and substrate materials show only minor changes (<15%) in thermal conductance after introducing defects in the graphene layer. Through careful analysis of our MD simulations for various defective graphene interfaces, we conclude that, contradictory to common beliefs, it is the formation of direct contact thermal bridge, instead of the improvement in the phonon DOS overlap or interfacial coupling strength, that has a decisive effect and promotes thermal transport across defective graphene interfaces. The differing impacts of the thermal bridge on G of defective graphene sandwiched by layers of the same and different materials are primarily attributed to the varying coupling strength between the substrate and superstrate. Our work provides important insights and physical understandings of the mechanisms of heat conduction across defective graphene interfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SciGPT应助STEAD采纳,获得10
2秒前
乐乐乐乐乐乐应助言小采纳,获得50
3秒前
4秒前
迅速千愁完成签到 ,获得积分10
4秒前
6秒前
6秒前
平凡之路发布了新的文献求助10
6秒前
胡梅13发布了新的文献求助10
7秒前
9秒前
手拿把掐发布了新的文献求助30
9秒前
星辰大海应助balelalala采纳,获得10
12秒前
14秒前
科目三应助zeng采纳,获得10
15秒前
16秒前
HEAUBOOK应助科研通管家采纳,获得10
19秒前
HEAUBOOK应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
20秒前
20秒前
rtlnk应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
手拿把掐完成签到,获得积分10
20秒前
20秒前
Hello应助科研通管家采纳,获得10
20秒前
小易完成签到,获得积分10
21秒前
科目三应助英俊白莲采纳,获得10
22秒前
胡梅13完成签到,获得积分10
25秒前
25秒前
喜宝完成签到 ,获得积分10
26秒前
27秒前
滴滴完成签到 ,获得积分10
28秒前
dyyisash完成签到 ,获得积分10
29秒前
zeng发布了新的文献求助10
29秒前
yiqihunhun发布了新的文献求助10
30秒前
佳妮发布了新的文献求助10
31秒前
孟冬发布了新的文献求助10
32秒前
zjp完成签到,获得积分10
34秒前
34秒前
上官若男应助失眠的凡阳采纳,获得10
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808948
求助须知:如何正确求助?哪些是违规求助? 3353666
关于积分的说明 10366348
捐赠科研通 3069917
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766320