Machine learning-based predictive model for abdominal diseases using physical examination datasets

医学 胆囊 体格检查 腹部超声检查 超声波 内科学 放射科 肾脏疾病 血压 超声科
作者
Chen Wei,Yujie Zhang,Weili Wu,Hui Yang,Wenxiu Huang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:173: 108249-108249 被引量:5
标识
DOI:10.1016/j.compbiomed.2024.108249
摘要

Abdominal ultrasound is a key non-invasive imaging method for diagnosing liver, kidney, and gallbladder diseases, despite its clinical significance, not all individuals can undergo abdominal ultrasonography during routine health check-ups due to limitations in equipment, cost, and time. This study aims to use basic physical examination data to predict the risk of diseases of the liver, kidney, and gallbladder that can be diagnosed via abdominal ultrasound. Basic physical examination data contain gender, age, height, weight, BMI, pulse, systolic blood pressure (SBP), diastolic blood pressure (DBP), high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol, triglycerides, fasting blood glucose (FBG), and uric acid—we established seven single-label predictive models and one multi-label predictive model. These models were specifically designed to predict a range of abdominal diseases. The single-label models, utilizing the XGBoost algorithm, targeted diseases such as fatty liver (with an Area Under the Curve (AUC) of 0.9344), liver deposits (AUC: 0.8221), liver cysts (AUC: 0.7928), gallbladder polyps (AUC: 0.7508), kidney stones (AUC: 0.7853), kidney cysts (AUC: 0.8241), and kidney crystals (AUC: 0.7536). Furthermore, a comprehensive multi-label model, capable of predicting multiple conditions simultaneously, was established by FCN and achieved an AUC of 0.6344. We conducted interpretability analysis on these models to enhance their understanding and applicability in clinical settings. The insights gained from this analysis are crucial for the development of targeted disease prevention strategies. This study represents a significant advancement in utilizing physical examination data to predict ultrasound results, offering a novel approach to early diagnosis and prevention of abdominal diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心一凤发布了新的文献求助10
1秒前
欣慰元蝶完成签到,获得积分10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
嘟噜嘟噜应助科研通管家采纳,获得50
1秒前
Owen应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
lilivite应助科研通管家采纳,获得20
1秒前
科研通AI6应助科研通管家采纳,获得30
1秒前
浮游应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得30
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得30
2秒前
Orange应助科研通管家采纳,获得200
2秒前
FashionBoy应助科研通管家采纳,获得30
2秒前
iNk应助科研通管家采纳,获得20
2秒前
慕青应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得150
2秒前
2秒前
3秒前
3秒前
科研通AI6应助伊伊采纳,获得10
3秒前
bare发布了新的文献求助10
3秒前
握瑜给握瑜的求助进行了留言
4秒前
5秒前
lihaifeng发布了新的文献求助10
5秒前
5秒前
披日悬光发布了新的文献求助10
5秒前
7秒前
任品贤发布了新的文献求助10
7秒前
7秒前
WHB发布了新的文献求助10
8秒前
8秒前
10秒前
wanci应助1huiqina采纳,获得30
10秒前
简单平蓝发布了新的文献求助10
10秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453677
求助须知:如何正确求助?哪些是违规求助? 4561217
关于积分的说明 14281209
捐赠科研通 4485189
什么是DOI,文献DOI怎么找? 2456535
邀请新用户注册赠送积分活动 1447259
关于科研通互助平台的介绍 1422687