Abstract WMP20: Deep Learning Radiomics Identifies White Matter Hyperintensity-Related Cognitive Decline Based on T2-FLAIR

医学 流体衰减反转恢复 高强度 无线电技术 认知功能衰退 白质 白质疏松症 认知 冲程(发动机) 磁共振成像 内科学 放射科 精神科 痴呆 疾病 机械工程 工程类
作者
Lili Huang,Xiaolei Zhu,Hui Zhao,Yuting Mo,Dan Yang,Chenglu Mao,Zhihong Ke,Yun Xu
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:55 (Suppl_1)
标识
DOI:10.1161/str.55.suppl_1.wmp20
摘要

Introduction: Early identification of white matter hyperintensity-related cognitive impairment (WMH-CI) through normal MRI images is of great significance for early clinical intervention to reduce the occurrence of dementia. The aim of this study was to develop a generalizable and interpretable deep learning model for screening WMH-related CI using radiomic features (RFs) from T2 fluid-attenuated inversion recovery (T2-FLAIR) images. Methods: A total of 783 subjects were enrolled from three medical centres. RFs for WMH lesions were extracted from T2-FLAIR images in each subject. A deep learning model with a hierarchical transformer architecture was used to leverage all extracted RFs, instead of feature selection, to develop and cross-validate the diagnostic model for cognitive dysfunction. Unsupervised domain adaptation was used to address the cross-centre data inconsistencies without labelling the outer centre data. A gradient-weighted class activation mapping approach was adopted to identify the RFs that contributed most to the diagnosis. Subgroup analysis, correlation analysis and mediation analysis were performed to confirm the clinical relevance of the model. Besides, we also verify the clinical importance of the model by microstructural pathology of WMH detected by diffusion tensor imaging. Results: The deep learning model showed robust diagnostic power for WMH related CI, with an area under the receiver operating curve (AUC) of 0.841±0.016 in the development cohort. The prediction accuracy, sensitivity, specificity, precision and recall were 0.793 ± 0.108, 0.798 ± 0.021, 0.800 ± 0.065, 0.716±0.055 and 0.793 ± 0.108, respectively. The model generalized well across different subgroups. It also performed well in other two external verification cohorts, with an AUC of 0.859 and 0.749, respectively. The visual representation showed that the most important features were textural features, which were also significantly correlated with clinical assessment scale and diffusion parameters. Conclusions: This study presents a non-invasive imaging biomarker that can identify WMH-CI patients and is applicable to all levels of hospitals since only conventional MRI images are needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
狂野的海雪完成签到,获得积分10
4秒前
科目三应助兴奋柜子采纳,获得30
5秒前
锺zhishui发布了新的文献求助10
5秒前
5秒前
牧歌完成签到,获得积分0
7秒前
許1111发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
懵懂的苠关注了科研通微信公众号
9秒前
遇上就这样吧应助穆佳琦采纳,获得210
10秒前
尛瞐慶成发布了新的文献求助10
10秒前
aslink完成签到,获得积分10
10秒前
凉笙墨染完成签到,获得积分10
11秒前
11秒前
12秒前
传奇3应助早点毕业采纳,获得10
12秒前
12秒前
13秒前
13秒前
zhaoyuqing完成签到 ,获得积分10
15秒前
苏钰发布了新的文献求助10
16秒前
16秒前
16秒前
竹筏过海应助Hong采纳,获得10
17秒前
卡卡西应助Hong采纳,获得20
17秒前
斯丹康发布了新的文献求助10
17秒前
18秒前
兴奋柜子发布了新的文献求助30
18秒前
缘子你好完成签到,获得积分10
19秒前
19秒前
iNk应助研友_ZGDQ48采纳,获得20
19秒前
小奶球发布了新的文献求助10
19秒前
20秒前
21秒前
树袋发布了新的文献求助10
22秒前
苏钰完成签到,获得积分10
22秒前
liz发布了新的文献求助10
23秒前
忆韵完成签到,获得积分10
23秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3902553
求助须知:如何正确求助?哪些是违规求助? 3447341
关于积分的说明 10848471
捐赠科研通 3172587
什么是DOI,文献DOI怎么找? 1753017
邀请新用户注册赠送积分活动 847496
科研通“疑难数据库(出版商)”最低求助积分说明 790006