Prospective Evaluation of Machine Learning for Public Health Screening: Identifying Unknown Hepatitis C Carriers

公共卫生 医学 人工智能 肝炎 计算机科学 病毒学 环境卫生 机器学习 病理
作者
Noa Dagan,Ori Magen,Michael Leshchinsky,Maya Makov-Assif,Marc Lipsitch,Ben Y. Reis,Shlomit Yaron,Doron Netzer,Ran D. Balicer
标识
DOI:10.1056/aioa2300012
摘要

BackgroundCompared with traditional population-wide screening approaches, screening based on machine-learning models enables the targeted identification of high-risk individuals. We describe the development of machine-learning models that address the pressing need for identifying unknown hepatitis C virus (HCV) carriers and measure the real-world yield of this approach deployed in a nationwide setting.MethodsRetrospective data on 18- to 79-year-old members of Israel's largest health care organization tested for HCV from 2013 to 2021 were used to train and test prediction models for identifying active HCV carriers. In August 2021, over 1.5 million members eligible for screening, according to the U.S. Preventive Services Task Force (USPSTF) recommendations, were prospectively evaluated by the top-performing model based on XGBoost, and a staged process of outreach to the highest-risk members began. In November 2022, the yield of the XGBoost-based screening was evaluated and compared with the concurrent testing of USPSTF screening–eligible members.ResultsThe retrospective cohort used for model development included 492,290 individuals, with 0.1% confirmed active HCV carriers. The best-performing model, based on XGBoost, yielded an area under the receiver operating characteristic curve of 0.95. Selecting the top 0.1%, 1%, and 5% of high-risk individuals for screening translated to positive predictive values of 18.2%, 6.2%, and 1.9% and sensitivities of 13.0%, 44.4%, and 67.6%, respectively. During the prospective outreach, a total of 477 members were screened for HCV antibodies, and 38 were eventually found to be active HCV carriers, yielding an extrapolated number needed to screen (NNS) of 10. Among the 53,403 USPSTF screening–eligible members who were tested over the same period, 38 were found to be active HCV carriers, yielding an NNS of 1029.ConclusionsA nationwide implementation of a machine-learning–based HCV screening managed to identify the same number of HCV carriers as the traditional screening approach while achieving over 100-fold-greater efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵馨儿完成签到,获得积分10
刚刚
1秒前
1111完成签到 ,获得积分10
1秒前
许半仙发布了新的文献求助10
1秒前
2秒前
拉长的念珍完成签到,获得积分10
2秒前
大鱼完成签到,获得积分10
3秒前
坤坤发布了新的文献求助10
3秒前
王小嘻发布了新的文献求助10
4秒前
野性的眼睛完成签到,获得积分10
4秒前
4秒前
传奇3应助我劝告了风采纳,获得10
5秒前
6秒前
7秒前
ccc完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
shuochen完成签到,获得积分10
8秒前
CipherSage应助Eva采纳,获得10
9秒前
GZY完成签到,获得积分10
9秒前
10秒前
科目三应助王小嘻采纳,获得10
10秒前
11秒前
阿辰完成签到,获得积分10
11秒前
11秒前
传奇3应助Jinglan_Duan采纳,获得10
11秒前
小火发布了新的文献求助10
12秒前
春愁舟摇发布了新的文献求助10
12秒前
也行完成签到 ,获得积分10
12秒前
13秒前
Winfred发布了新的文献求助10
13秒前
supering11完成签到,获得积分10
13秒前
laura发布了新的文献求助10
14秒前
16秒前
谦让映菡发布了新的文献求助10
16秒前
cry发布了新的文献求助10
17秒前
顺利的雁梅完成签到 ,获得积分10
17秒前
守护星星发布了新的文献求助10
18秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
A simple method for reusing western blots on PVDF membranes 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3925618
求助须知:如何正确求助?哪些是违规求助? 3470211
关于积分的说明 10962427
捐赠科研通 3199751
什么是DOI,文献DOI怎么找? 1767968
邀请新用户注册赠送积分活动 857131
科研通“疑难数据库(出版商)”最低求助积分说明 795933