Assessing Environmental Oil Spill Based on Fluorescence Images of Water Samples and Deep Learning

环境科学 深度学习 采出水 计算机科学 人工智能 石油工程 卷积神经网络 石油 机器学习 工艺工程 环境工程 工程类 化学 有机化学
作者
D. P. Liu,Ming Liu,Guangyu Sun,Zhiguo Zhou,Dongfang Wang,Fang He,Jinxing Li,Juan Xie,Ryan Gettler,Eric L. Brunson,Jeffery A. Steevens,Dongkuan Xu
出处
期刊:Journal of Environmental Informatics [International Society for Environmental Information Sciences]
被引量:10
标识
DOI:10.3808/jei.202300491
摘要

Measuring oil concentration in the aquatic environment is essential for determining the potential exposure, risk, or injury for oil spill response and natural resource damage assessment. Conventional analytical chemistry methods require samples to be collected in the field, shipped, and processed in the laboratory, which is also rather time-consuming, laborious, and costly. For rapid field response immediately after a spill, there is a need to estimate oil concentration in near real time. To make the oil analysis more portable, fast, and cost effective, we developed a plug-and-play device and a deep learning model to assess oil levels in water using fluorescent images of water samples. We constructed a 3D-printed device to collect fluorescent images of solvent-extracted water samples using an iPhone. We prepared approximately 1,300 samples of oil at different concentrations to train and test the deep learning model. The model comprises a convolutional neural network and a novel module of histogram bottleneck block with an attention mechanism to exploit the spectral features found in low-contrast images. This model predicts the oil concentration in weight per volume based on fluorescence image. We devised a confidence interval estimator by combining gradient boosting and polymodal regressor to provide a confidence assessment of our results. Our model achieved sufficient accuracy to predict oil levels for most environmental applications. We plan to improve the device and iPhone application as a near-real-time tool for oil spill responders to measure oil in water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jenningseastera应助Raymond采纳,获得10
1秒前
脑洞疼应助猪猪hero采纳,获得10
3秒前
王战辉完成签到,获得积分20
3秒前
5秒前
6秒前
渠安完成签到 ,获得积分10
6秒前
天天快乐应助ghifi37采纳,获得10
15秒前
sunny完成签到 ,获得积分10
18秒前
D515完成签到,获得积分10
24秒前
土豆完成签到,获得积分10
25秒前
25秒前
朴实以松完成签到,获得积分10
27秒前
ZYN完成签到,获得积分10
27秒前
林间完成签到 ,获得积分10
27秒前
科研通AI5应助ding采纳,获得10
29秒前
建丰完成签到,获得积分10
30秒前
32秒前
pluto应助B1n采纳,获得20
32秒前
34秒前
李健发布了新的文献求助10
35秒前
37秒前
金皮卡完成签到,获得积分10
39秒前
41秒前
jenningseastera应助Raymond采纳,获得10
42秒前
霍师傅发布了新的文献求助10
43秒前
隐形曼青应助初识采纳,获得10
45秒前
45秒前
ding发布了新的文献求助10
45秒前
李健完成签到,获得积分10
46秒前
告白气球完成签到,获得积分10
47秒前
烟花应助霍师傅采纳,获得30
48秒前
告白气球发布了新的文献求助10
51秒前
54秒前
陈纸溪完成签到 ,获得积分10
1分钟前
1分钟前
qiao发布了新的文献求助10
1分钟前
996403211完成签到,获得积分10
1分钟前
1分钟前
猪猪hero发布了新的文献求助10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778731
求助须知:如何正确求助?哪些是违规求助? 3324277
关于积分的说明 10217710
捐赠科研通 3039405
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798531
科研通“疑难数据库(出版商)”最低求助积分说明 758401