Prediction heavy metals accumulation risk in rice using machine learning and mapping pollution risk

生物累积 环境科学 随机森林 水田 土壤污染 环境化学 土壤水分 土壤科学 农学 化学 机器学习 生物 计算机科学
作者
Bing Zhao,Wenxuan Zhu,Shefeng Hao,Hua Ming,Qiling Liao,Jing Yang,Ling Liu,Xueyuan Gu
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:448: 130879-130879 被引量:64
标识
DOI:10.1016/j.jhazmat.2023.130879
摘要

Rapid and accurate prediction of metal bioaccumulation in crops are important for assessing metal environmental risks. We aimed to incorporate machine learning modeling methods to predict heavy metal contents in rice crops and identify influencing factors. We conducted a field study in Jiangsu province, China, collecting 2123 pairs of soil-rice samples in a uniform measurement and using 10 machine learning algorithms to predict the uptake of Cd, Hg, As, and Pb in rice grain. The Extremely Randomized Tree model exhibited the best performance for rice-Cd and rice-Hg (Cd: R2 = 0.824; Hg: R2 = 0.626), while the Random Forest model performed best for As and Pb (As: R2 = 0.389; Pb: R2 = 0.325). The feature importance analysis showed that soil-Cd and pH had the highest impact on rice-Cd risk, which is in line with previous studies; while temperature and soil organic carbon were more important to rice-Hg than soil-Hg. Then, based on another set of 1867 uniformly distributed paddy soil samples in Jiangsu province, the Cd and Hg risks of soil and rice were visualized using the established models. Mapping result revealed an inconsistent pattern of hotspot distribution between soil-Hg and rice-Hg, i.e., a higher rice-Hg risk in the northern area, while higher soil-Hg in south. Our findings highlight the importance of temperature on Hg bioaccumulation risk to crops, which has often been overlooked in previous risk assessment processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
单纯灵松发布了新的文献求助10
2秒前
拉拉完成签到 ,获得积分20
3秒前
乌冬面发布了新的文献求助10
4秒前
香蕉觅云应助MMP采纳,获得30
5秒前
5秒前
大气的草莓完成签到,获得积分10
5秒前
5秒前
CNcattle完成签到,获得积分20
6秒前
Y123发布了新的文献求助10
6秒前
orixero应助王jj采纳,获得10
6秒前
小蘑菇应助典雅听露采纳,获得30
8秒前
Carpe发布了新的文献求助10
9秒前
kkk完成签到,获得积分10
9秒前
深情安青应助yj采纳,获得50
10秒前
10秒前
12秒前
shama完成签到,获得积分20
13秒前
Sli完成签到,获得积分10
13秒前
肖肖肖发布了新的文献求助10
14秒前
shama发布了新的文献求助10
17秒前
shangqinwang发布了新的文献求助30
17秒前
19秒前
19秒前
20秒前
20秒前
20秒前
22秒前
yj发布了新的文献求助50
23秒前
典雅听露发布了新的文献求助30
23秒前
幸福大白发布了新的文献求助10
25秒前
25秒前
王jj发布了新的文献求助10
26秒前
科研通AI5应助shangqinwang采纳,获得10
28秒前
ZSY完成签到,获得积分10
28秒前
28秒前
CipherSage应助谦让的靖巧采纳,获得10
29秒前
Criminology34发布了新的文献求助50
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
ACI SPEC 351.4 : 2024 Cementitious Grout Installation between Foundations and Equipment Bases—Specification 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4819865
求助须知:如何正确求助?哪些是违规求助? 4128625
关于积分的说明 12777012
捐赠科研通 3868195
什么是DOI,文献DOI怎么找? 2128688
邀请新用户注册赠送积分活动 1149390
关于科研通互助平台的介绍 1045277